蓝桥杯嵌入式第六届真题(完成)STM32G431

蓝桥杯嵌入式第六届真题(完成)STM32G431

题目部分

蓝桥杯嵌入式第六届真题(完成)STM32G431_第1张图片

蓝桥杯嵌入式第六届真题(完成)STM32G431_第2张图片

蓝桥杯嵌入式第六届真题(完成)STM32G431_第3张图片

蓝桥杯嵌入式第六届真题(完成)STM32G431_第4张图片

相关文件

main.c
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * 

© Copyright (c) 2021 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */
/* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "adc.h" #include "rtc.h" #include "tim.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "i2c_hal.h" #include "key.h" #include "myadc.h" #include "led.h" #include "string.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ uint8_t lcdtext[30]; extern struct Key key[4]; uint8_t view = 0;//鍒濆lcd鏄剧ず RTC_TimeTypeDef Time; RTC_DateTypeDef Date; uint8_t h=0,m=0,s=0; float val; float k = 0.1; uint8_t ledflag = 1; uint8_t ledtimes; extern unsigned char Recive_Data[5]; extern unsigned char Temp_Data[1]; extern bool rxflag; extern unsigned char rx_pointer; uint32_t counter = 0; bool ledState = false; /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ void key_process(void); void lcd_process(void); void led_process(void); void rx_process(void); void tx_process(void); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_TIM2_Init(); MX_ADC2_Init(); MX_RTC_Init(); MX_USART1_UART_Init(); /* USER CODE BEGIN 2 */ HAL_TIM_Base_Start_IT(&htim2); HAL_UART_Receive_IT(&huart1, Temp_Data, 1); LCD_Init(); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ LCD_Clear(Black); LCD_SetBackColor(Black); LCD_SetTextColor(White); //EEPROM_Write_Float(0,0.9); //HAL_Delay(5); while (1) { lcd_process(); //EEPROM_Write(0,20); // HAL_RTC_GetDate(&hrtc,&Date,RTC_FORMAT_BIN); // HAL_RTC_GetTime(&hrtc,&Time,RTC_FORMAT_BIN); // sprintf((char *)lcdtext,"%.2f",get_adc(&hadc2)); // LCD_DisplayStringLine(Line2,lcdtext); // sprintf((char *)lcdtext,"%02d-%02d-%02d",Time.Hours,Time.Minutes,Time.Seconds); // LCD_DisplayStringLine(Line4,lcdtext); key_process(); led_process(); rx_process(); tx_process(); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Configure the main internal regulator output voltage */ HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.LSIState = RCC_LSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV2; RCC_OscInitStruct.PLL.PLLN = 20; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } /** Initializes the peripherals clocks */ PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC|RCC_PERIPHCLK_USART1 |RCC_PERIPHCLK_ADC12; PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2; PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK; PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSI; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ void key_process(void) { if(key[0].key_flag==1&&view==0) { LCD_Clear(Black); key[0].key_flag=0; view = 1; ledflag = 0; } else if(key[0].key_flag==1&&view==1) { LCD_Clear(Black); key[0].key_flag=0; view = 0; ledflag = 1; } if(key[1].key_flag==1&&(view==0||view==1)) { LCD_Clear(Black); key[1].key_flag=0; view = 2; } if(key[1].key_flag==1&&(view==3||view==4||view==5)) { LCD_Clear(Black); key[1].key_flag=0; view = 0; } if(key[2].key_flag==1&&(view==2||view==3||view==4||view==5)) { LCD_Clear(Black); key[2].key_flag=0; view++; if(view>5) { view = 3; } } if(key[3].key_flag==1&&view==3) { LCD_Clear(Black); key[3].key_flag=0; h++; if(h>24) { h=0; } } else if (key[3].key_flag==1&&view==4) { LCD_Clear(Black); key[3].key_flag=0; m++; if(m>60) { m=0; } } else if (key[3].key_flag==1&&view==5) { LCD_Clear(Black); key[3].key_flag=0; s++; if(s>60) { s=0; } } } void lcd_process(void) { switch (view) { case 0: //LED鎵撳紑鐣岄潰 { val = get_adc(&hadc2); sprintf((char *)lcdtext," V1:%.2f ",val); LCD_DisplayStringLine(Line1,lcdtext); sprintf((char *)lcdtext," K:%.1f ",EEPROM_Read_Float(0)); LCD_DisplayStringLine(Line3,lcdtext); sprintf((char *)lcdtext," LED:ON "); LCD_DisplayStringLine(Line5,lcdtext); HAL_RTC_GetDate(&hrtc,&Date,RTC_FORMAT_BIN); HAL_RTC_GetTime(&hrtc,&Time,RTC_FORMAT_BIN); sprintf((char *)lcdtext," T:%02d-%02d-%02d",Time.Hours,Time.Minutes,Time.Seconds); LCD_DisplayStringLine(Line7,lcdtext); } break; case 1://LED鍏抽棴鐣岄潰 { val = get_adc(&hadc2); sprintf((char *)lcdtext," V1:%.2f ",val); LCD_DisplayStringLine(Line1,lcdtext); sprintf((char *)lcdtext," K:%.1f ",EEPROM_Read_Float(0)); LCD_DisplayStringLine(Line3,lcdtext); sprintf((char *)lcdtext," LED:OFF "); LCD_DisplayStringLine(Line5,lcdtext); HAL_RTC_GetDate(&hrtc,&Date,RTC_FORMAT_BIN); HAL_RTC_GetTime(&hrtc,&Time,RTC_FORMAT_BIN); sprintf((char *)lcdtext," T:%02d-%02d-%02d",Time.Hours,Time.Minutes,Time.Seconds); LCD_DisplayStringLine(Line7,lcdtext); } break; case 2://璁剧疆鐣岄潰 { sprintf((char *)lcdtext," Setting "); LCD_DisplayStringLine(Line3,lcdtext); sprintf((char *)lcdtext," %02d - %02d - %02d",h,m,s); LCD_DisplayStringLine(Line5,lcdtext); } break; case 3://璁剧疆灏忔椂鐣岄潰 { sprintf((char *)lcdtext," Setting "); LCD_DisplayStringLine(Line3,lcdtext); sprintf((char *)lcdtext," %02d - %02d - %02d",h,m,s); LCD_DisplayStringLine(Line5,lcdtext); sprintf((char *)lcdtext," --"); LCD_DisplayStringLine(Line6,lcdtext); } break; case 4://璁剧疆鍒嗛挓鐣岄潰 { sprintf((char *)lcdtext," Setting "); LCD_DisplayStringLine(Line3,lcdtext); sprintf((char *)lcdtext," %02d - %02d - %02d",h,m,s); LCD_DisplayStringLine(Line5,lcdtext); sprintf((char *)lcdtext," --"); LCD_DisplayStringLine(Line6,lcdtext); } break; case 5://璁剧疆绉掔晫闈? { sprintf((char *)lcdtext," Setting "); LCD_DisplayStringLine(Line3,lcdtext); sprintf((char *)lcdtext," %02d - %02d - %02d",h,m,s); LCD_DisplayStringLine(Line5,lcdtext); sprintf((char *)lcdtext," --"); LCD_DisplayStringLine(Line6,lcdtext); } break; default: break; } } void led_process(void) { if (ledflag && val > 3.3f * k) { if (ledState) { leddisplay(0x02); }else{ leddisplay(0x00); } } } void rx_process(void) { if(rxflag) { if(Recive_Data[3] == '1') { k = 0.1; char My_sentdata[30]; sprintf(My_sentdata,"ok\n"); HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50); } else if(Recive_Data[3] == '2') { k = 0.2; char My_sentdata[30]; sprintf(My_sentdata,"ok\n"); HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50); } else if(Recive_Data[3] == '3') { k = 0.3; char My_sentdata[30]; sprintf(My_sentdata,"ok\n"); HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50); } else if(Recive_Data[3] == '4') { k = 0.4; char My_sentdata[30]; sprintf(My_sentdata,"ok\n"); HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50); } else if(Recive_Data[3] == '5') { k = 0.5; char My_sentdata[30]; sprintf(My_sentdata,"ok\n"); HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50); } else if(Recive_Data[3] == '6') { k = 0.6; char My_sentdata[30]; sprintf(My_sentdata,"ok\n"); HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50); } else if(Recive_Data[3] == '7') { k = 0.7; char My_sentdata[30]; sprintf(My_sentdata,"ok\n"); HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50); } else if(Recive_Data[3] == '8') { k = 0.8; char My_sentdata[30]; sprintf(My_sentdata,"ok\n"); HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50); } else if(Recive_Data[3] == '9') { k = 0.9; char My_sentdata[30]; sprintf(My_sentdata,"ok\n"); HAL_UART_Transmit(&huart1,(uint8_t*)My_sentdata,strlen(My_sentdata),50); } EEPROM_Write_Float(0,k); rx_pointer=0; rxflag=false; memset(Recive_Data,0,5); } } void tx_process(void) { static bool already_sent = false; if(Time.Hours == h && Time.Minutes == m && Time.Seconds == s) { if (!already_sent) // 检查是否已经发送过数据 { char My_sentdata[30]; sprintf(My_sentdata,"%.2f+%.1f+%02d%02d%02d\n", val, k, h, m, s); HAL_UART_Transmit(&huart1, (uint8_t*)My_sentdata, strlen(My_sentdata), 50); already_sent = true; // 标记已发送 } } else { already_sent = false; // 当时间改变时重置标志 } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
void key_process(void);

处理按键任务,用户多个界面之间的转换以及上报时间的设置,根据当前lcd的状态,来决定按键按下的功能

void lcd_process(void);

显示各种状态,使用状态机,显示不同状态,使用sprinf函数格式化重定向字符串

void led_process(void);

控制led闪烁,使用一个计数值,在抵达定时器中++实现200ms计数

蓝桥杯嵌入式第六届真题(完成)STM32G431_第5张图片

void rx_process(void);

控制串口发送的数据,不知为何HAL_UART_Receive_IT(huart, Temp_Data, 1);中如果不是1,就会只能进入一次串口接收回调函数,所以使用每次接收一个然后设置一个缓冲区,控制指针来一次接收5个数据,只有接受完五个数据即进入5次串口接收回调函数后才执行解析函数,注意最后全波清0

void tx_process(void);

控制上报的数据,当rtc时钟的时间到达设置时间发送数据

led.c
#include "led.h"

void leddisplay(uint8_t led)
{
    HAL_GPIO_WritePin(GPIOC,GPIO_PIN_All,GPIO_PIN_SET);
    HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET);
    HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RESET);
    HAL_GPIO_WritePin(GPIOC,led<<8,GPIO_PIN_RESET);
    HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET);
    HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RESET);
}

该板子是低电平点亮,8个led灯使用的是高8位所以需要左移8位,led等于几就是将高8位中第几位设置成低电平即点亮,由于led与lcd复用引脚最后打开锁存器让值被写入之后,立刻关闭锁存器防止影响lcd

myadc.c
#include "myadc.h"


float get_adc(ADC_HandleTypeDef *hadc)
{
	float val;
	// 等待ADC转换完成
	HAL_ADC_Start(hadc);
	val = HAL_ADC_GetValue(hadc);
	return val*3.3f/4096;
}

usart1.c
#include "usart1.h"
#include "string.h"
#include "usart.h"
#include "stdbool.h"
extern float k;
unsigned char Recive_Data[5];
unsigned char Temp_Data[1];
unsigned char rx_pointer = 0;
bool rxflag = false;
char usartsend[30];
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{

    
  if(huart->Instance==USART1)
	{
		Recive_Data[rx_pointer++] = Temp_Data[0];
		HAL_UART_Receive_IT(huart, Temp_Data, 1);
		if(Recive_Data[4]!=0)
		{
			rxflag = true;
		}
	
	}
}


接收完四个之后置一个标志位,rx_process才能执行,每次都需调用HAL_UART_Receive_IT函数重新开启串口接收

key.c
#include "key.h"
#include "led.h"
struct Key key[4]={0,0,0,0};
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
	if(htim->Instance==TIM2)
	{
		
		key[0].key_gpio = HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_0);
		key[1].key_gpio = HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_1);
		key[2].key_gpio = HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_2);
		key[3].key_gpio = HAL_GPIO_ReadPin(GPIOA,GPIO_PIN_0);
		
		for(int i = 0; i<4;i++)
		{
			switch (key[i].key_index)
			{
			case 0:/* constant-expression */
				{
					if(key[i].key_gpio==0)
					{
						key[i].key_index = 1;
					}

				}
				break;
			case 1:
				{
					if(key[i].key_gpio==0)
					{
						key[i].key_index = 2;
						key[i].key_flag=1;
					}else{
						key[i].key_index = 0;
					}
				}
			case 2:
				{
					if(key[i].key_gpio==1)
					{
						key[i].key_index=0;
					}
				}
				break;
			}
			
		}
		
	}
}


使用状态机,第一次进入之后,进入下一个状态,如果电平还是刚刚的电平说明真的按下,如果不是重新进入第一个状态重新判断,定时器定时时间10ms刚好消抖,最后一个case2是判断如果按键松开,说明可以进入下一次判断。

i2c_hal.c
/*
  程序说明: CT117E-M4嵌入式竞赛板GPIO模拟I2C总线驱动程序
  软件环境: MDK-ARM HAL库
  硬件环境: CT117E-M4嵌入式竞赛板
  日    期: 2020-3-1
*/

#include "i2c_hal.h"
#include "main.h"
#define DELAY_TIME	20

/**
  * @brief SDA线输入模式配置
  * @param None
  * @retval None
  */
void SDA_Input_Mode()
{
    GPIO_InitTypeDef GPIO_InitStructure = {0};

    GPIO_InitStructure.Pin = GPIO_PIN_7;
    GPIO_InitStructure.Mode = GPIO_MODE_INPUT;
    GPIO_InitStructure.Pull = GPIO_PULLUP;
    GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
}

/**
  * @brief SDA线输出模式配置
  * @param None
  * @retval None
  */
void SDA_Output_Mode()
{
    GPIO_InitTypeDef GPIO_InitStructure = {0};

    GPIO_InitStructure.Pin = GPIO_PIN_7;
    GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_OD;
    GPIO_InitStructure.Pull = GPIO_NOPULL;
    GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
}

/**
  * @brief SDA线输出一个位
  * @param val 输出的数据
  * @retval None
  */
void SDA_Output( uint16_t val )
{
    if ( val )
    {
        GPIOB->BSRR |= GPIO_PIN_7;
    }
    else
    {
        GPIOB->BRR |= GPIO_PIN_7;
    }
}

/**
  * @brief SCL线输出一个位
  * @param val 输出的数据
  * @retval None
  */
void SCL_Output( uint16_t val )
{
    if ( val )
    {
        GPIOB->BSRR |= GPIO_PIN_6;
    }
    else
    {
        GPIOB->BRR |= GPIO_PIN_6;
    }
}

/**
  * @brief SDA输入一位
  * @param None
  * @retval GPIO读入一位
  */
uint8_t SDA_Input(void)
{
	if(HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_7) == GPIO_PIN_SET){
		return 1;
	}else{
		return 0;
	}
}


/**
  * @brief I2C的短暂延时
  * @param None
  * @retval None
  */
static void delay1(unsigned int n)
{
    uint32_t i;
    for ( i = 0; i < n; ++i);
}

/**
  * @brief I2C起始信号
  * @param None
  * @retval None
  */
void I2CStart(void)
{
    SDA_Output(1);
    delay1(DELAY_TIME);
    SCL_Output(1);
    delay1(DELAY_TIME);
    SDA_Output(0);
    delay1(DELAY_TIME);
    SCL_Output(0);
    delay1(DELAY_TIME);
}

/**
  * @brief I2C结束信号
  * @param None
  * @retval None
  */
void I2CStop(void)
{
    SCL_Output(0);
    delay1(DELAY_TIME);
    SDA_Output(0);
    delay1(DELAY_TIME);
    SCL_Output(1);
    delay1(DELAY_TIME);
    SDA_Output(1);
    delay1(DELAY_TIME);

}

/**
  * @brief I2C等待确认信号
  * @param None
  * @retval None
  */
unsigned char I2CWaitAck(void)
{
    unsigned short cErrTime = 5;
    SDA_Input_Mode();
    delay1(DELAY_TIME);
    SCL_Output(1);
    delay1(DELAY_TIME);
    while(SDA_Input())
    {
        cErrTime--;
        delay1(DELAY_TIME);
        if (0 == cErrTime)
        {
            SDA_Output_Mode();
            I2CStop();
            return ERROR;
        }
    }
    SDA_Output_Mode();
    SCL_Output(0);
    delay1(DELAY_TIME);
    return SUCCESS;
}

/**
  * @brief I2C发送确认信号
  * @param None
  * @retval None
  */
void I2CSendAck(void)
{
    SDA_Output(0);
    delay1(DELAY_TIME);
    delay1(DELAY_TIME);
    SCL_Output(1);
    delay1(DELAY_TIME);
    SCL_Output(0);
    delay1(DELAY_TIME);

}

/**
  * @brief I2C发送非确认信号
  * @param None
  * @retval None
  */
void I2CSendNotAck(void)
{
    SDA_Output(1);
    delay1(DELAY_TIME);
    delay1(DELAY_TIME);
    SCL_Output(1);
    delay1(DELAY_TIME);
    SCL_Output(0);
    delay1(DELAY_TIME);

}

/**
  * @brief I2C发送一个字节
  * @param cSendByte 需要发送的字节
  * @retval None
  */
void I2CSendByte(unsigned char cSendByte)
{
    unsigned char  i = 8;
    while (i--)
    {
        SCL_Output(0);
        delay1(DELAY_TIME);
        SDA_Output(cSendByte & 0x80);
        delay1(DELAY_TIME);
        cSendByte += cSendByte;
        delay1(DELAY_TIME);
        SCL_Output(1);
        delay1(DELAY_TIME);
    }
    SCL_Output(0);
    delay1(DELAY_TIME);
}

/**
  * @brief I2C接收一个字节
  * @param None
  * @retval 接收到的字节
  */
unsigned char I2CReceiveByte(void)
{
    unsigned char i = 8;
    unsigned char cR_Byte = 0;
    SDA_Input_Mode();
    while (i--)
    {
        cR_Byte += cR_Byte;
        SCL_Output(0);
        delay1(DELAY_TIME);
        delay1(DELAY_TIME);
        SCL_Output(1);
        delay1(DELAY_TIME);
        cR_Byte |=  SDA_Input();
    }
    SCL_Output(0);
    delay1(DELAY_TIME);
    SDA_Output_Mode();
    return cR_Byte;
}

//
void I2CInit(void)
{
    GPIO_InitTypeDef GPIO_InitStructure = {0};

    GPIO_InitStructure.Pin = GPIO_PIN_7 | GPIO_PIN_6;
    GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStructure.Pull = GPIO_PULLUP;
    GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
}


void EEPROM_Write(uint8_t address,uint8_t Data)
{
	
	I2CStart();
	I2CSendByte(0xA0);
	I2CWaitAck();
	
	I2CSendByte(address);
	I2CWaitAck();
	
	I2CSendByte(Data);
	I2CWaitAck();
	
	I2CStop();
}


uint8_t EEPROM_Read(uint8_t address)
{
	uint8_t data;
	I2CStart();
	I2CSendByte(0xA0);
	I2CWaitAck();
	I2CSendByte(address);
	I2CWaitAck();
	I2CStop();
	
	I2CStart();
	I2CSendByte(0xA1);
	I2CWaitAck();
	
	data = I2CReceiveByte();
	I2CWaitAck();
	I2CStop();
	
	
	return data;
	
}
	
	
void EEPROM_Write_Float(uint8_t address, float data)
{
    union FloatUnion fu;
    fu.floatval = data;

    for(int i = 0; i < sizeof(float); i++)
    {
        EEPROM_Write(address + i, fu.bytes[i]);
        HAL_Delay(5); 
		}
}


float EEPROM_Read_Float(uint8_t address)
{
   union FloatUnion fu;

    for(int i = 0; i < sizeof(float); i++)
    {
        fu.bytes[i] = EEPROM_Read(address + i);
    }

    return fu.floatval;
}

只有最后四个函数是本人写的,其余为蓝桥杯官方提供,主要是两种i2c时序,指定地址写和指定地址读的时序,重点在读需要首先写入要读取的地址之后再开始读,浮点数的存储使用联合体union

蓝桥杯嵌入式第六届真题(完成)STM32G431_第6张图片

floatval和bytes数组共用内存

可以看本人文章stm32教程中有对i2c四种时序的说明

你可能感兴趣的:(单片机,蓝桥杯,stm32,职场和发展)