人脸识别的实例

姓名:王铎澎

学号:20000300055

转载自:https://blog.csdn.net/Tencent_TEG/article/details/104404312?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522160212108519725271753551%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=160212108519725271753551&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~first_rank_ecpm_v3~pc_rank_v2-4-104404312.first_rank_ecpm_v3_pc_rank_v2&utm_term=%E5%9F%BA%E4%BA%8E%E6%A0%91%E8%8E%93%E6%B4%BE%E7%9A%84%E4%BA%BA%E8%84%B8%E8%AF%86%E5%88%AB&spm=1018.2118.3001.4187

嵌牛导读:本篇文章介绍了一个基于树莓派硬件的实物人脸识别系统,仅供参考。

嵌牛鼻子:人脸识别,实物开发

1.案例概述

1.1 背景

实现一个人脸识别进行开锁的功能,用在他的真人实景游戏业务中。总的来说,需求描述简单,但由于约束比较多,在架构与选型上需要花些心思。

1.2 部署效果

由于该游戏还在线上服务中,此处就不放出具体操作的视频了。

1.3 玩家体验

玩家发现并进入空间后,在显示屏看到自己在当前场景出镜的实时画面。

玩家靠近观察时,捕获当前帧进行人脸识别,实时画面中出现水印字幕“认证中”

人脸认证失败时,实时画面水印字幕变更为“认证失败”,字幕维持 2 秒后消失,恢复初始状态。玩家继续寻找游戏线索,重新进行认证。

人脸认证成功时,实时画面水印字幕变更为“认证成功”,并弹开保险箱门。进入后续游戏环节。

2.产品要求

2.1 需求说明

需求提出时比较明确,核心逻辑不复杂。

人脸识别:通过人脸识别进行鉴权。

开锁管理:通过鉴权则打开箱门,未通过则保持锁定。

反馈提示:需要有实时视频反馈,指引明确,便于优化玩家体验。

2.2 约束说明

毕竟是生意,所以在商言商,对实用性和成本要求很高,关键是不要影响游戏过程,同时保证玩家体验。

低成本:需要低建设成本,低维护成本。

易维护:对维护人员技术水平要求低,出现软硬件故障时,任意店员可以快速恢复。

高可靠:识别准确率高,容错能力强,系统持续运行中故障率低。

有限空间:整套系统在去除显示屏、电磁锁、保险箱后,其它结构实施空间不能超过 20cm*15cm*15cm 体积。

采光不足:实景空间小,有顶光无侧光,曝光时间较长。

通用供电:只提供 5V、12V 两种直流电接口。

并行处理:鉴权流程与反馈流程并行,鉴权过程中,反馈系统不能出现中断、阻塞等情况,使玩家有明显的中断、卡死体验。

弱网络环境:由于房间隔断多,网络共用,所以网速有限,有突发延迟情况。

2.3 功能设计

可能的架构方案有多种(不同方案间的比较,在文末进行),下面展开说明一下最终上线的方案。

2.3.1 设定流程

流程与效果,请参考1.3 玩家体验部分

2.3.2 可配置内容

腾讯云密钥对

修改配置文件,用于适配腾讯云账号切换功能(测试账号/正式账号)。

人员库 ID

修改配置文件,用于指定不同人员库(测试库/正式库)。

水印提示

更换对应图片,实现更换水印。使用图片管理,而不是文字配置的原因,是由于图片配置模式无需字库支持,无需配置显示大小,易于图案嵌入。由于所见即所得,对维护人员要求低。

关机选项

可配置任务完成后,是否自动关机。用于游戏环境复位准备,减少复位工作量。

2.3.3 运营与维护

系统运营管理

场景启动时,统一上电。认证通过后,自动关机,完成复位。

故障处理

软硬件故障:无法开机、可开机无显示、可开机显示系统异常,可开机未知异常等等,更换树莓派或其它硬件。

网络故障:正常运行,无法认证,可查网络+查云日志,解决网络问题;

云产品异常:运行 4 个月,未发生过,可以忽略,如发生则联系云售后;

2.3.4 成本分析

硬件成本:500 ~ 600 元。

备件成本:按 1:1 备件,500 ~ 600 元。

运行成本:云端 0 元,使用免费额度;电费网费,忽略不计。

3.技术实现

3.1 系统架构

3.1.1 硬件组成:

树莓派:终端主控

摄像头:视频输入

传感器:超声波测距

显示屏:视频输出

继电器:控制电磁锁

电磁锁:控制保险箱门

3.1.2 关键特性

图片识别:使用图片识别,而非视频流,减少对网络带宽要求。

识别要求低:欠曝光照片也有高识别率。

触发识别:玩家在场景内活动时间长,触发模式避免了高频认证、误开锁情况,同时降低认证成本。

测距选型:超声波传感器技术成熟,成本低(3 元);激光传感器成本高(30 元)

多进程:视频处理与监测鉴权由两个进程实现,避免了阻塞等情况,同时使用进程间通信,实现可靠交互。

3.2 系统搭建

3.2.1 腾讯云配置

注册账号

按文档指引获取 API 密钥

配置人脸识别

访问官网控制台,通过“新建人员库->创建人员->上传照片”,建立认证基础。

其中所使用的“人员库 ID”是关键信息,用于后续 API 调用识别时,指定认证动作匹配的人员库。

注:由于此案例只识别一个人员,无需对人员 ID 进行匹配,故不用指定人员 ID。

3.2.2 树莓派配置

安装系统

访问www.raspberrypi.org获取镜像,并进行安装。注意必须安装桌面版,否则需要单独管理 HDMI 输出。

配置网络

进入命令行,执行 “raspi-config”,选择"Network Options",配置 WiFi 接入点。为了固定 IP,编辑 /etc/dhcpcd.conf 文件,添加配置信息。

# 具体内容请参考你的本地网络规划

interfacewlan0

static ip_address=192.168.0.xx/24

static routers=192.168.0.1

static domain_name_servers=192.168.0.1192.168.0.2

安装腾讯云 SDK

参考指引文档,安装调用腾讯云 API 的依赖库。

sudo apt-get install python-pip -y

pip install tencentcloud-sdk-python

安装图像处理库

系统默认安装 python2.7,但没有opencv库,需要安装。(下载包体积较大,默认源为国外站,比较慢。树莓派改国内源方法,请自行百度,并挑选离自己近的源站)

sudo apt-get install libopencv-dev -y

sudo apt-get install python-opencv -y

部署代码

访问github获取源码,将 src 文件夹内容,复制到 /home/pi/faceid 下。

更改 /home/pi/faceid/config.json 中的配置信息,必须改为你的云 API 密钥(sid/skey)、人员库 ID(facegroupid),其它配置按需调整。

配置自启动

需要配置图形界面自启动,保证视频输出由 HDMI 接口输出至显示屏,编辑

/home/pi/.config/autostart/faceid.desktop 写入如下内容

Type=Application

Exec=python /home/pi/faceid/main.py

3.2.3 硬件接线

树莓派 GPIO 图示

摄像头

CSI 接口

超声波传感器

TrigPin:BCM-24 / GPIO24

EchoPin:BCM-23 / GPIO23

VCC :接 5V

GND :接 GND

继电器

4 引脚侧 接 树莓派 GPIO 引脚

VCC :接 5V

GND/RGND :接 GND

CH1 : BCM-12 / GPIO12

3 端口侧 接 电磁锁

初始状态为电磁锁接常闭端。

继电器原理请参考3.3.4 硬件相关部分。

3.2.4 测试运行

完成上述工作后,接电启动系统,本地反馈查看显示屏,云端识别结果可查看系统日志。

3.3 代码逻辑与涉及技术

3.3.1 流程伪代码

# 监测鉴权进程-主进程

获取应用配置(API ID/Key 等)

初始化GPIO引脚(准备控制 传感器、继电器)

启动视频管理进程(辅进程)

循环开始:

ifnot 测距达到触发标准:

continue

  与辅进程通信(捕获当前帧,并存入指定路径,并添加“认证中”水印)

  调用云API,使用该帧图片人脸识别

if识别成功:

    与辅进程通信(变更水印为“认证成功”)

等待5秒

    关机 或 继续运行(由config.json中 su2halt 字段指定)

else:

    与辅进程通信(变更水印为“认证失败”)

等待2秒

  与辅进程通信(清除水印)

# 视频管理进程-辅进程

初始化摄像头

循环开始:

  取帧

  取进程间共享队列

    按消息进行不同操作(帧图像保存/加不同水印/不处理)

  输出帧

3.3.2 视频与识别

如上文伪代码所示,通过逐帧处理,并连续输出,显示实时视频。

触发识别

测距传感器确认物体靠近,且 0.3 秒内距离变化小于 2cm,确认为待认证状态。再延时 0.3 秒,进行图像帧捕获。再次延时的原因是物体停止时,会有扭转、微调等动作,若直接取帧,会由于采光不足(上文提到的约束)出现模糊情况,所以再次延时,确保捕获稳定图像。

3.3.3 图像水印

水印原理

opencv 中,提供了多种图像处理函数,如:图文处理(图加字)、图图处理(图间加/减/乘/除/位运算)等等。通过不同的处理方式,可以实现底图加字、底图加图、掩膜处理等等多种效果。本案例中使用的是基于位运算的掩膜处理方式。

水印图片

为了便于维护和更新,本案例中使用图片做为水印来源,避免字库约束,也增大了灵活性,易于在水印中增加图形,并以分辨率直接定义水印大小,所见即所得。

默认水印图片为白底黑字。

水印处理逻辑

为突出水印的浮动效果,将水印图片中的黑色区域透明化后,叠加到原始图片中。由于字体透明效果,水印字体颜色随基础视频变化,效果比较明显。

源码说明

# img1为当前视频帧(底图),img2为已读取水印图

def addpic(img1,img2):

    # 关注区域ROI-取底图中将被水印图编辑的图像

rows, cols = img2.shape[:2]

    roi = img1[:rows, :cols]

    # 图片灰化-避免水印图非纯黑纯白情况

    img2gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

    # 生成掩膜-过滤浅色,位运算取非

ret, mask = cv2.threshold(img2gray,220,255,3) #cv2.THRESH_BINARY

    mask_inv = cv2.bitwise_not(mask)

    # 生成水印区图像-底图裁出字体部分,生成水印区最终图像,替换原图水印区

    img1_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)

    dst = cv2.add(img1_bg, img2)

    img1[:rows, :cols] = dst

returnimg1

3.3.4 硬件相关

超声波测距

超声波传感器(4 引脚:VCC、Trig、Echo、GND),Trig 端输出一个大于 10μs 的高电平,激活发出超声波,并在收到反射波后,Echo 端会输出一个持续高电平,持续时间就是“发波至收波”的时间。

即:测距结果(米)=Echo 端高电平时长*340 米/2

继电器

使用的 5V 继电器模块有双侧接线,一侧为供电与信号(4 引脚,兼容 3.3V 信号),一侧为通路开闭管理(3 端口)。

继电器在“通路管理侧”实现了一个“单刀双开关”的模式,通过“供电与信号”侧“CH1 引脚”的高低电平,控制单刀的方向。

在安装过程中,电磁锁供电默认接继电器常闭端,对继电器给出信号后,继电器切换到常开端,则电磁锁断电开锁.

GPIO

GPIO(General-purpose input/output 通用输入输出),以引脚方式提供硬件间的联系能力。树莓派 3B+,有 40 个 GPIO 引脚(请参考3.2.3 硬件接线中的参考图示),树莓派官方操作系统 Raspbian 下,可以使用系统默认安装的 python 中 RPi.GPIO 库,进行操作。

4.其它

4.1 方案选型对比

设计的核心在于人脸鉴权模块,这里直接影响成本和稳定性,最后选择了上文方案(平衡成本、维护性及可靠性)。曾经的其它几种备选人脸识别方案:

4.1.1 本地识别 A 方案:

使用 ESP-EYE 芯片,均由芯片完成,依赖 ESP-IDF、ESP—WHO,使用 C 进行开发。

低硬件成本(模块成本 189*2),高开发维护成本(C 开发)。

问题:难于更新配置与故障分析处理。适用于大量部署场景。

4.1.2 本地识别 B 方案:

使用树莓派直接进行人脸识别,方案成熟,开源代码丰富。

中硬件成本,低开发成本,高维护成本。

问题:树莓派负载高,即使用间隔帧算法,也仅维持在 20fps 以下,卡顿明显。如进一步调优,受限于个人经验问题,恐难以保持长期稳定运行。

4.1.3 本地识别 C 方案:

使用 BM1880 边缘计算开发板 或其它图像处理板,社区口碑不错,有框架支持。

问题:高硬件成本(模块成本 1000*2),高开发维护成本(C 开发)。如果使用算力棒,需要 X86_64 做基础平台,成本降低有限,复杂度不变。适用于扩展能力场景。

4.1.4 云端识别 A 方案:

使用腾讯云的视频智能分析产品,简化终端架构,使用树莓派 zero 推流上云(后续放出实现方案),即可获取识别结果,且支持高频多次检索等特性。

部署成本低(终端视频相关模块 150 元),运营成本低(当前 0.28 元/分钟,按该场景下单次运行 20 分钟计算,单次游戏成本 5.6 元)

问题:对网络稳定性依赖大,断流等情况影响体验。在本案例的网络约束下,影响使用效果,更适于网络条件较好、高频检索的应用场景。

你可能感兴趣的:(人脸识别的实例)