- 大模型Agent 和 RAG 的关系
大数据追光猿
大模型语言模型人工智能学习方法transformer
Agent和RAG(Retrieval-AugmentedGeneration)是两种在自然语言处理(NLP)和人工智能领域中广泛使用的技术,它们在功能、目标和实现方式上既有区别又有联系。以下是它们的关系及其协同作用的详细分析。1.Agent和RAG的定义(1)Agent定义:Agent是一种智能体,能够感知环境并采取行动以完成特定任务。在NLP领域,Agent通常指一个基于大语言模型(LLM)的
- 国产模型能否挑战 GPT-4?一文拆解 DeepSeek-V3 架构与实战应用
AI筑梦师
人工智能学习框架架构深度学习pythonagi人工智能tensorflow
✳️一、引言✅1.1DeepSeek-V3发布背景与定位随着大模型技术的快速演进,从GPT-3到GPT-4,全球在通用人工智能方向取得了长足进展。但与此同时,开源社区始终缺乏一个真正兼顾性能、效率、中文能力和实用性的高质量大模型。DeepSeek-V3的推出正是在这个背景下的一次关键突破。DeepSeek-V3是由中国团队DeepSeek开发的第三代大语言模型,它具备以下几个核心特性:开源可商用:
- 11.网络编程的基础知识
就很对
网络linux
11.网络编程的基础知识**1.OSI模型与TCP/IP模型****2.IP地址分类****3.Socket编程****4.TCP三次握手与四次挥手****5.常用网络测试工具****6.练习与作业****7.总结**1.OSI模型与TCP/IP模型OSI模型(开放系统互联模型):7层结构:应用层:为网络用户提供各种服务(如HTTP、FTP)。表示层:数据加密解密、压缩解压缩。会话层:管理进程会话
- Python匿名函数Lambda,不止是省略函数名这么简单
橙色小博
python的学习之旅python开发语言
目录1.前言2.Lambda函数的基本用法3.关于Lambda函数的应用3.1与map函数结合3.2lambda与if-else语句3.3多参数lambda3.4嵌套lambda3.5字典与lambda(也是我本人最喜欢的用法)3.6lambda其他用法4.总结:Lambda的编程哲学1.前言在Python的广阔天地里,Lambda函数宛如一颗璀璨的明珠,以其简洁优雅的姿态,为代码增添了一份独特的
- Github上神仙级大模型项目:大语言模型(LLM)入门学习路线图,三个月让你从大模型基础到精通!
AI大模型-大飞
github语言模型学习人工智能AI大模型程序员AI
Github项目上有一个大语言模型学习路线笔记,它全面涵盖了大语言模型的所需的基础知识学习,LLM前沿算法和架构,以及如何将大语言模型进行工程化实践。这份资料是初学者或有一定基础的开发/算法人员入门活深入大型语言模型学习的优秀参考。这份资料重点介绍了我们应该掌握哪些核心知识,并推荐了一系列优质的学习视频和博客,旨在帮助大家系统性地掌握大型语言模型的相关技术。大语言模型(LargeLanguageM
- Agent、RAG、LangChain的概念及作用
北极冰雨
大模型人工智能
Agent:概念:在人工智能中,Agent通常指的是能够执行任务或做出决策的实体,可以是简单的程序,也可以是复杂的系统,如自动化客服助手、推荐系统等,甚至可以是软件代理、机器人或虚拟助手等各种形式。作用:它能利用内置的大语言模型来做出规划,决定执行哪些步骤,以及每个步骤需要调用哪些工具(如RAG),之后调用相应的工具,最终完成任务。例如,在客服问答场景中,Agent可以根据用户的问题,规划出需要查
- AtCoder备赛冲刺必刷题(C++) | 洛谷 AT_abc396_a Triple Four
热爱编程的通信人
c++算法开发语言
本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。欢迎大家订阅我的专栏:算法题解:C++与Python实现!附上汇总贴:算法竞赛备考冲刺必刷题(C++)|汇总【题目来源】洛谷:AT_abc396_a[ABC396A]
- ARPG 游戏战斗系统设计详解
小宝哥Code
Unity引擎游戏
ARPG游戏战斗系统设计详解ARPG(ActionRole-PlayingGame,动作角色扮演游戏)的战斗系统需要兼顾操作性、打击感、技能组合、AI交互等多个方面。本指南将详细解析ARPG战斗系统的核心要素、设计思路与优化方案,适用于Unity、UE4及自研引擎开发。1.ARPG战斗系统的核心要素1.1战斗核心机制即时战斗(Real-TimeCombat):无回合制,玩家实时控制角色进行攻击、闪
- java选择语句
FAQEW
java
Java选择结构深度解析一、if结构体系1.单条件判断//基础if结构intscore=85;if(score>=60){System.out.println("考试通过");}//判断空值(防御性编程)Stringtext=null;if(text!=null&&!text.isEmpty()){System.out.println(text.length());}执行流程:truefalse条
- Linux——Linux系统编程之基于TFTP实现服务器与开发板间的文件传输实战总结
Winter_world
Linux系统TFTP服务器搭建TFTP文件传输
目录0引言1TFTP服务器搭建1.1TFTP基础1.2Ubuntu搭建TFTP服务器1.3测试TFTP服务器2开发板实现TFTP文件传输2.1同一网段2.2配置2.3客户端与服务器的通信0引言我们前面总结的Linux字符设备、串口编程博文中,在虚拟机中编译得到可执行文件后,都是通过U盘连接开发板进行测试验证的,或者就是把可执行文件编译到最小系统中,再OTG烧写进开发板,这两种方法都比较麻烦,这里我
- NVIDIA Dynamo源码编译
Luchang-Li
大模型推理引擎大模型推理引擎dynamo
Refhttps://github.com/PyO3/maturinRust程序设计语言代码库:https://github.com/ai-dynamo/dynamohttps://github.com/ai-dynamo/nixldynamo/container/Dockerfile.vllm相关whl包官方提供了4个whl包ai_dynamo#这个包ubuntu22.04也可以用,ubuntu
- A800核心加速技术深度剖析
智能计算研究中心
其他
内容概要作为第三代异构计算架构的典型代表,A800通过深度融合通用计算单元与专用加速模块,构建了高度灵活的资源调度体系。其核心突破在于将矩阵运算、并行任务分发与内存访问路径进行系统性重构,解决了传统架构中计算密度与能效失衡的行业痛点。通过实测数据显示,在典型AI训练场景下,A800相较于前代架构实现了3.2倍的吞吐量提升,同时单位功耗下的指令执行效率优化达47%。技术维度第二代架构A800架构提升
- H200架构升级与实战解析
智能计算研究中心
其他
内容概要作为新一代高性能计算平台的核心载体,H200架构通过系统性硬件重构实现了计算性能的显著跃迁。本文将从芯片级设计革新出发,剖析其多维度升级路径:首先解读计算单元拓扑重组带来的并行效率提升,阐释内存子系统的带宽优化策略;继而拆解面向AI训练场景的混合精度加速机制,以及科学计算工作负载的动态资源调度方案。通过比对行业典型部署案例中的能效曲线与吞吐表现,系统化呈现H200在模型训练加速、大规模仿真
- AI模型技术演进与行业应用图谱
智能计算研究中心
其他
内容概要当前AI模型技术正经历从基础架构到行业落地的系统性革新。主流深度学习框架如TensorFlow和PyTorch持续优化动态计算图与分布式训练能力,而MXNet凭借高效的异构计算支持在边缘场景崭露头角。与此同时,模型压缩技术通过量化和知识蒸馏将参数量降低60%-80%,联邦学习则通过加密梯度交换实现多机构数据协同训练。在应用层面,医疗诊断模型通过迁移学习在CT影像分类任务中达到98.2%的准
- DeepSeek多语言AI高效应用实践
智能计算研究中心
其他
内容概要在人工智能技术快速迭代的背景下,DeepSeek系列模型凭借混合专家架构(MoE)与670亿参数规模,在多语言处理、视觉语言理解及复杂任务生成领域实现了突破性进展。本文系统性拆解其技术架构设计逻辑,聚焦论文写作、代码生成、SEO关键词拓展三大核心场景,分析模型在高生成质量、低使用成本维度的差异化优势。技术维度DeepSeekProver传统单模态模型多语言支持97种语言动态切换单一语种优化
- RTX 4090旗舰显卡效能实战剖析
智能计算研究中心
其他
内容概要作为NVIDIA新一代旗舰显卡,RTX4090凭借AdaLovelace架构的革新设计,在4K/8K分辨率下的游戏与创作场景中展现了突破性表现。本文将通过多维度实测数据,系统解析其核心性能:首先聚焦8K游戏帧率与光线追踪效果的实战表现,结合DLSS3.0技术的动态对比,揭示超分辨率技术对高负载场景的优化逻辑;随后深入探讨24GBGDDR6X显存在视频渲染与AI运算中的效率边界,同步验证显存
- 第8章:Docker数据持久化与卷管理
DogDog_Shuai
dockereureka容器
第8章:Docker数据持久化与卷管理作者:DogDog_Shuai阅读时间:约25分钟难度:中级目录1.引言2.Docker数据持久化概述3.Docker卷管理4.数据卷容器5.绑定挂载6.临时文件系统
- 【第1章>第6节】CMAC小脑模型神经网络的理论学习与MATLAB仿真
fpga和matlab
#第1章·神经网络学习matlabCMAC小脑模型神经网络人工智能
目录1.使用软件和版本2.CMAC小脑模型神经网络概述2.1CMAC网络结构2.2CMAC地址映射2.3学习过程3.CMAC网络的MATLAB编程实现4.分辨率,重叠度,学习率对CMAC网络的训练性能影响分析4.1分辨率4.2重叠度4.3学习率5.视频操作步骤演示欢迎订阅FPGA/MATLAB/Simulink系列教程《★教程1:matlab入门100例》《★教程2:fpga入门100例》《★教程
- Java有哪些编程技巧?
java
Java编程技巧:提升效率与质量的实用指南在Java编程中,掌握一些高效的编程技巧不仅可以提高开发效率,还能提升代码的可读性、可维护性和性能。以下是一些实用的Java编程技巧,供开发者参考和应用。一、代码优化技巧(一)合理使用数据类型选择合适的数据类型:根据实际需求选择合适的数据类型。例如,如果只需要存储整数,且数值范围较小,可以使用int而不是long,以节省内存。使用包装类时需谨慎:Java的
- Swoole v6 要来了!即将增加多线程支持
phpswoole
在PHP+Swoole的服务器编程开发中,协程的支持已经解决了大部分难题,但是我们发现跨进程读写数据依然很难,需要借助进程间通信(IPC)、Redis、Swoole\Table或其他共享内存实现。Redis、IPC进程间通信方式性能较差。而Swoole\Table的问题是需要固定分配内存,无法扩容,存在诸多限制。除此之外,多进程的调试非常麻烦,例如我们要使用gdb就需要gdb-p逐个进程去追踪,而
- 【Rust基础】使用Rust和WASM开发的图片压缩工具
勇敢牛牛_
rustwasm开发语言图片压缩
图片压缩工具使用rust+wasm开发了一个简易版的图片压缩工具,支持JPG、PNG、GIF、WEBP等图片格式,不限制大小,无需上传图片,完全在浏览器中执行。工具地址:https://eai.coderbox.cn/image-compression实现方式JPEG对原图进行量化,通过指定质量参数,控制压缩质量。PNG同样的进行量化,并重新将rgba颜色(如果原图是rgba)调整为8位索引颜色,
- 模式搜索+扩散模型:FlowMo重构图像Token化的技术革命
芯作者
DD:日记重构
图像Token化作为现代生成式AI系统的核心技术,长期面临对抗性训练不稳定、潜在空间冗余等挑战。斯坦福大学李飞飞与吴佳俊团队提出的FlowMo(FlowtowardsModes)创新性地融合模式搜索与扩散模型,在多个关键维度突破传统方法局限,为图像压缩与重建开辟新路径。本文将深度解析其技术突破、实现原理及行业影响。一、传统图像Token化的困境与FlowMo的破局之道1.1传统方法的三大桎梏传统T
- Java:从入门到创新
java
Java:从入门到创新一、Java简介Java是一种广泛使用的高级编程语言,自1995年首次发布以来,一直深受开发者的喜爱。它由SunMicrosystems公司开发,后来被Oracle公司收购。Java的设计目标是简单、健壮、安全且跨平台,这些特性使其在企业级应用开发中占据重要地位。二、Java的主要特点(一)简单易学Java的语法与C语言和C++语言很接近,但丢弃了C++中一些复杂且容易出错的
- 【赵渝强老师】达梦数据库的数据库对象
数据库信创
达梦数据库中包含各种数据库对象,主要分为两大类型:基本数据库对象和复杂数据库对象。下面分别进行介绍。视频讲解如下:https://www.bilibili.com/video/BV1HwffYXEu5/?aid=113888909595...一、基本数据库对象常见的基本数据库对象有:表、索引、视图、序列、同义词等。之所以叫做基本数据库对象是因为这些对象直接使用一条DDL(DataDefinitio
- OpenAI API - Streaming(流) 的概念与基本使用
田园里的猫
OpenAIAPI人工智能chatgptpythonnode.js
前言此篇文章旨在通过对OpenAIAPI中Streaming(流)概念的介绍和示例,来帮助大家更好的理解和使用Streaming(流)这个功能,我之所以把Streaming(流)拿出来单独写一篇,是因为Streaming(流)方式的开发,能让我们对返回结果有更多的操作空间更多的创意空间,让我们产品有更好的体验目录1.基本概念2.主要在哪些API中使用3.流的工作原理4.基本使用示例5.应用场景示例
- facefusion AI换脸软件的本地部署过程记录
kfrealme
人工智能
tags:AI驾驭facefusion我的环境Win10+N卡安装步骤安装Python3.10方案手动安装Python官网下载安装包安装PythonReleasesforWindows|Python.org我的蓝奏云分享https://www.lanzoub.com/i9La81s1o5gb密码:h17b命令行安装1以管理员身份打开「命令提示符」2删除Microsoft官方源wingetsourc
- Python中手动实现进制转换
棉猴
Python进制转换十进制二进制十六进制八进制
在《Python中进制转换》中提到可以使用bin()、oct()、int()和hex()等函数编程实现数字间的进制转换。除了编程实现进制转换外,还可以通过手动实现。1手动实现二进制数转换为十进制可以通过“填空法”手动将二进制数转换为十进制数,例如将二进制数“0b1101”转换为十进制数的方法如图1所示。“填空法”可以归纳为四个步骤:首先“画空格”,接下来“写次方”,然后“填数字”,最后“列算式”。
- 关于AIGC降重 方法的总结
hjehheje
AIGC
在当下信息如潮水般涌来的内容创作世界里,“小狗伪原创”这个独特的存在,犹如一颗投入平静湖面的石子,激起了层层涟漪。那么,小狗伪原创到底处于何种档次呢?这一问题如同神秘的宝藏,亟待我们去探索和剖析。一、小狗伪原创的定义小狗伪原创,说白了,就是借助特定手段,对原始内容进行一番“乔装打扮”。它对原文的语句结构进行巧妙变换,词汇也被替换成看似不同实则相近的表述,可其骨子里的核心思想以及大部分内容,依旧深深
- 维普AIGC降重方法有哪些?
hjehheje
AIGC
在学术写作和论文创作中,重复率过高是许多人面临的一大难题。随着科技的发展,维普AIGC为我们提供了一系列有效的降重方法。那么,维普AIGC降重方法有哪些呢?接下来就为大家详细介绍。语义理解与改写维普AIGC具备强大的语义理解能力。例如,当我们面对一段论述市场趋势的文字时,它能精准把握核心含义。假设原文是“当前智能手机市场呈现出快速增长的趋势,消费者对高性能手机的需求日益旺盛”,维普AIGC可能会将
- 从指令集鸿沟到硬件抽象:AI 如何重塑手机与电脑编程语言差异——PanLang 原型全栈设计方案与实验性探索1
灏瀚星空
PanLang原型全栈设计方案与实验性探索人工智能智能手机开发语言架构机器学习语言模型模板方法模式
AI如何跨越指令集鸿沟?手机与电脑编程语言差异溯源与统一路径——PanLang原型全栈设计方案与实验性探索1文章目录AI如何跨越指令集鸿沟?手机与电脑编程语言差异溯源与统一路径——PanLang原型全栈设计方案与实验性探索1前言一、手机与电脑编程语言的核心差异二、实现语言统一的技术路径1.硬件抽象层设计(HAL2.0)2.自适应运行时系统3.跨平台UI引擎三、新型统一语言设计要素1.核心特性2.编
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep