大模型相关术语

AGI(Artificial General Intelligence)

指通用人工智能,专注于研制像人一样思考、像人一样从事多种用途的机器。它与一般的特定领域智能(如机器视觉、语音识别等)相区分。

AIGC(AI-Generated Content)

基于人工智能技术,通过已有数据寻找规律,并通过适当的泛化能力生成相关内容的技术。它可以生成图像、文本、音频、视频等内容。
AIGC指【内容生成式人工智能】,指的是一种AI的类型,包括图像,文本,音频等内容生成式AI。所以这里包括了目前比较火热的AI绘画以及基于大语言模型的AI对话。

Transformer

一种深度学习模型架构,广泛应用于自然语言处理任务。Transformer模型以自注意力机制为基础,已成为众多AI大模型的核心架构。

注意力机制(Attention Mechanism)

一种用于处理序列数据的机制,允许模型在处理输入序列时对不同位置的信息分配不同的注意力权重。这对于理解长文本和建立语境非常有帮助。

参数量(Model Parameters)

指的是神经网络模型中的可调整参数数量。AI大模型通常有数亿到数千亿的参数,这些参数用于存储和学习模型的知识。B是Billion(十亿)的意思,如7B模型就是70亿参数量的大模型。

涌现(Emergence)

或称创发、突现、呈展、演生,是一种现象。许多小实体相互作用后产生了大实体,而这个大实体展现了组成它的小实体所不具有的特性。研究发现,模型规模达到一定阈值以上后,会在多步算术、大学考试、单词释义等场景的准确性显著提升,称为涌现。

泛化(Generalization)

模型泛化是指一些模型可以应用(泛化)到其他场景,通常为采用迁移学习、微调等手段实现泛化。

你可能感兴趣的:(大模型,大模型和)