import javax.management.Query;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;
public class BST> {
private class Node {
public E e;
public Node left, right;
public Node(E e) {
this.e = e;
left = null;
right = null;
}
@Override
public String toString() {
return e.toString();
}
}
private Node root;
private int size;
public BST() {
root = null;
size = 0;
}
public int getSize() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
//向二分搜索树中添加新的元素e
public void add(E e) {
root = add(root, e);
}
// 向以node为根的二分搜索树中插入元素E,递归算法
// 返回插入新节点后二分搜索树的根
public Node add(Node node, E e) {
if (node == null) {
size++;
return new Node(e);
}
if (e.compareTo(node.e) < 0) {
node.left = add(node.left, e);
} else if (e.compareTo(node.e) > 0) {
node.right = add(node.right, e);
}
return node;
}
//看二分搜索树中是否包含元素e
public boolean contains(E e) {
return contains(root, e);
}
private boolean contains(Node node, E e) {
if (node == null)
return false;
if (e.compareTo(node.e) < 0) {
return contains(node.left, e);
} else if (e.compareTo(node.e) > 0) {
return contains(node.right, e);
}
return true;
}
//查询二分搜索树的最小元素
public E minimun() {
return minimun(root).e;
}
private Node minimun(Node node) {
if (isEmpty()) throw new IllegalArgumentException("BST is empty");
if (node.left != null)
return minimun(node.left);
return node;
}
//查询二分搜索树的最大元素
public E maximun() {
return maximun(root).e;
}
private Node maximun(Node node) {
if (isEmpty()) throw new IllegalArgumentException("BST is empty");
if (node.right != null) {
return maximun(node.right);
}
return node;
}
//前序遍历
public void preOrder() {
preOrder(root);
}
private void preOrder(Node node) {
if (node == null) return;
System.out.println(node);
preOrder(node.left);
preOrder(node.right);
}
//从二分搜索树中删除最小值所在的节点,返回最小值
public E removeMin() {
E ret = minimun();
removeMin(root);
return ret;
}
//删除掉以node为根的二分搜索树中的最小节点
//返回删除节点后新的二分搜索树的根
private Node removeMin(Node node) {
if (node.left == null) {
Node right = node.right;
node.right = null;
size--;
return right;
}
node.left = removeMin(node.left);
return node;
}
public E removeMax() {
E ret = maximun();
removeMax(root);
return ret;
}
private Node removeMax(Node node) {
if (node.right == null) {
//找到最大节点
Node left = node.left;
node.left = null;
size--;
return left;
}
node.right = removeMax(node.right);
return node;
}
public void remove(E e) {
root = remove(root,e);
}
//删除以node为根的二分搜索树中值为e的节点,递归算法
//返回删除节点后新的二分搜索树的根
private Node remove(Node node, E e) {
if (node == null) {
return null;
}
if (e.compareTo(node.e) < 0) {
node.left = remove(node.left,e);
return node;
} else if (e.compareTo(node.e) > 0) {
node.right = remove(node.right, e);
return node;
} else {
//待删除节点左子树为空的情况
if (node.left == null) {
Node right = node.right;
node.right = null;
size--;
return right;
}
//待删除节点有字数为空的情况
if (node.right == null) {
Node left = node.left;
node.left = null;
size--;
return left;
}
//待删除节点左右字数不为空的情况
//找到比待删除节点大的最小节点,即待删除节点右子树的最小节点
//用这个节点顶替待删除节点的位置
Node successor = minimun(node.right);
successor.right = removeMin(node.right);
successor.left = node.left;
//注意这里面的size--在removeMin中已经执行了
node.left = node.right = null;
return successor;
}
}
//二分搜索树的非递归前序遍历
public void preOrderNR() {
Stack stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()) {
Node cur = stack.pop();
System.out.println(cur.e);
if (cur.right != null) {
stack.push(cur.right);
}
if (cur.left != null) {
stack.push(cur.left);
}
}
}
//二分搜索树的层序遍历
public void levelOrder() {
Queue q = new LinkedList<>();
((LinkedList) q).addFirst(root);
while (!q.isEmpty()) {
Node cur = q.remove();
System.out.println(cur.e);
if (cur.left != null) {
((LinkedList) q).addLast(cur.left);
}
if (cur.right != null) {
((LinkedList) q).addLast(cur.right);
}
}
}
//中序遍历
public void inOrder() {
inOrder(root);
}
private void inOrder(Node node) {
if (node == null) {
return;
}
inOrder(node.left);
System.out.println(node);
inOrder(node.right);
}
//后序遍历
public void postOrder() {
postOrder(root);
}
private void postOrder(Node node) {
if (node == null) {
return;
}
postOrder(node.left);
postOrder(node.right);
System.out.println(node);
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
generateBSTString(root, 0, sb);
return sb.toString();
}
//生成以node为根节点,深度为depth的描述二叉树的字符串
private void generateBSTString(Node node, int depth, StringBuilder sb) {
if (node == null) {
sb.append(generateDepthString(depth)).append("null\n");
return;
}
sb.append(generateDepthString(depth)).append(node.e).append("\n");
generateBSTString(node.left, depth + 1, sb);
generateBSTString(node.right, depth + 1, sb);
}
private String generateDepthString(int depth) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < depth; i++) {
sb.append("--");
}
return sb.toString();
}
public static void main(String[] args) {
BST bst = new BST<>();
int[] nums = {5, 3, 6, 8, 4, 2};
for (int i = 0; i < nums.length; i++) {
bst.add(nums[i]);
}
////////////////////////
// 5
// /\
// 3 6
// /\ \
// 2 4 8
////////////////////////
//前序5 3 2 4 6 8
bst.preOrder();
System.out.println();
System.out.println(bst);
bst.preOrderNR();
bst.levelOrder();
// System.out.println();
// bst.inOrder();
// System.out.println();
//
// bst.postOrder();
}
}
使用非递归的方式进行前序遍历,借助栈的数据结构:
//二分搜索树的非递归前序遍历
public void preOrderNR() {
Stack stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()) {
Node cur = stack.pop();
System.out.println(cur.e);
if (cur.right != null) {
stack.push(cur.right);
}
if (cur.left != null) {
stack.push(cur.left);
}
}
}
二分搜索树的层序遍历
//二分搜索树的层序遍历
public void levelOrder() {
Queue q = new LinkedList<>();
((LinkedList) q).addFirst(root);
while (!q.isEmpty()) {
Node cur = q.remove();
System.out.println(cur.e);
if (cur.left != null) {
((LinkedList) q).addLast(cur.left);
}
if (cur.right != null) {
((LinkedList) q).addLast(cur.right);
}
}
}
问题:
中序和后续遍历的非递归实现