案例一:
import cv2
import numpy as np
import os
import glob
# img1=cv2.imread(r"F:\myyolov5\202302141303-L2_27.jpg")
# print(img1.shape)
# img2=cv2.imread(r"F:\myyolov5\202303011344R2_112_1.jpg")
# print(img2.shape)
# img1=cv2.resize(img1,(512,500))
# img2=cv2.resize(img2,(512,500))
# inputs=np.hstack((img1,img2))
# # cv2.imshow("input img",inputs)
# cv2.imwrite(r"F:\Desktop\a.jpg",inputs)
# cv2.waitKey(0)
def open_image(path1):
img_path = glob.glob(path1)
print(img_path)
return np.array([cv2.imread(true_path,0) for true_path in img_path])
def combine_images(datasets,newraw,newcol):
raw,col = datasets[0].shape
newimage = np.zeros((newraw*raw,newcol*col))
for i in range(0,newraw):
for j in range(0,newcol):
for ii in range(0,raw):
for jj in range(0,col):
newimage[i*raw+ii][j*col+jj] = output[i*newcol+j][ii][jj]
return newimage
if __name__ == '__main__':
inputpath = 'F:\Desktop\myfile\*'
output = open_image(inputpath)
ohhh = combine_images(output,1,14) # 这个4,6的意思就是,我的图片通过那个打开的函数之后,变成了一个大的ndarray里面有24张图片,我想让他们以,行4列6,的形式组合起来。
cv2.imwrite(r"F:\Desktop\b.jpg",ohhh)
案例二:
def image_resize(img_name):
img=cv2.imread(img_name,0)
# w,h=img.shape
# img=cv2.resize(img,(int(w/2),int(h/2)))
return img
def open_image(path1):
img_path = glob.glob(path1)
print(img_path)
img_path.sort(key=lambda x: int(x.split("\\")[-1].split(".")[0]))
print(img_path)
# return np.array([cv2.imread(true_path,0) for true_path in img_path])
return np.array([image_resize(true_path) for true_path in img_path])
def combine_images(datasets,newraw,newcol):
raw,col = datasets[0].shape
newimage = np.zeros((newraw*raw,newcol*col))
for i in range(0,newraw):
for j in range(0,newcol):
for ii in range(0,raw):
for jj in range(0,col):
newimage[i*raw+ii][j*col+jj] = output[i*newcol+j][ii][jj]
return newimage
if __name__ == '__main__':
num_name="right_up"
select="right_up"
# inputpath = r'F:\Desktop\image\right_up\352\*'
inputpath=r"D:\image\%s\%s\*"%(select,num_name)
outputpath=r"D:\360_ditie_concat_after_image1\%s"%(select)
if not os.path.exists(outputpath):
os.mkdir(outputpath)
# print(inputpath)
output = open_image(inputpath)
print(output.shape)
ohhh=np.concatenate(output,1)
print(ohhh.shape)
# ohhh = combine_images(output,1,output.shape[0]) # 这个4,6的意思就是,我的图片通过那个打开的函数之后,变成了一个大的ndarray里面有24张图片,我想让他们以,行4列6,的形式组合起来。
# print(ohhh.shape)
# cv2.imwrite(os.path.join(outputpath,"GZDT18-043044_left_up_camImg_%s.jpg"%(num_name)),ohhh,[cv2.IMWRITE_JPEG_QUALITY, 90])
cv2.imwrite(os.path.join(outputpath, "GZDT18-043044_%s_camImg_%s.png" % (select,num_name)), ohhh)
案例三:
import cv2
import numpy as np
import os
import glob
def open_image(path1):
img_path = glob.glob(path1)
print(img_path)
img_path.sort(key=lambda x: int(x.split("\\")[-1].split(".")[0]))
print(img_path)
x1,x2,x3,x4=img_path[:15],img_path[15:30],img_path[30:45],img_path[45:60]
x1=np.array([cv2.imread(true_path, 0) for true_path in x1])
x2=np.array([cv2.imread(true_path,0) for true_path in x2])
x3=np.array([cv2.imread(true_path,0) for true_path in x3])
x4=np.array([cv2.imread(true_path,0) for true_path in x4])
return x1,x2,x3,x4
def combine_images(datasets,newraw,newcol):
raw,col = datasets[0].shape
newimage = np.zeros((newraw*raw,newcol*col))
for i in range(0,newraw):
for j in range(0,newcol):
for ii in range(0,raw):
for jj in range(0,col):
newimage[i*raw+ii][j*col+jj] = output[i*newcol+j][ii][jj]
return newimage
if __name__ == '__main__':
inputpath = r'F:\Desktop\my_gaotietu\*'
print(inputpath)
# inputpath=inputpath.sort(key=lambda x: int(x.split('/')[-1].split('.')[0].split('_')[-1]))
# print(inputpath)
output = open_image(inputpath)
ohhh = combine_images(output[0],1,15) # 这个4,6的意思就是,我的图片通过那个打开的函数之后,变成了一个大的ndarray里面有24张图片,我想让他们以,行4列6,的形式组合起来。
cv2.imwrite(r"F:\Desktop\my_gantie_save\1.jpg",ohhh)
ohhh_1 = combine_images(output[1], 1, 15)
cv2.imwrite(r"F:\Desktop\my_gantie_save\2.jpg", ohhh_1)
ohhh_2 = combine_images(output[2], 1, 15)
cv2.imwrite(r"F:\Desktop\my_gantie_save\3.jpg", ohhh_2)
ohhh_3 = combine_images(output[3], 1, 15)
cv2.imwrite(r"F:\Desktop\my_gantie_save\4.jpg", ohhh_3)