【C++11(一)】列表初始化and右值引用

【C++11(一)】列表初始化and右值引用_第1张图片

一、 统一的列表初始化

1.1 {}初始化

在C++98中,标准允许
使用花括号{}对数组或者结构体元素
进行统一的列表初始值设定

C++11扩大了用大括号
括起的列表(初始化列表)的使用范围
使其可用于所有的内置类型和
用户自定义的类型
使用初始化列表时
可添加等号(=),也可不添加

class Date
{
public:
	Date(int year, int month, int day)
		:_year(year)
		, _month(month)
		, _day(day)
	{
		cout << "Date(int year, int month, int day)" << endl;
	}
private:
	int _year;
	int _month;
	int _day;
};

void test1()
{
	Date d1(2024, 1, 29); // old style
	// C++11支持的列表初始化,这里会调用构造函数初始化
	Date d2{ 2024, 1, 30 };
	Date d3 = { 2024, 1, 31 };
	vector<Date> vd1 = { d1, d2 };
	vector<Date> vd2 = { Date{ 2024, 1, 29 }, Date{ 2024, 1, 30 } };
	vector<Date> vd3 = { { 2024, 1, 29 }, { 2024, 1, 31 } };
	map<string, string> dict = { {"sort", "排序"}, {"string", "字符串"}, {"Date", "日期"} };
	pair<string, string> kv1 = { "Date", "日期" };
	pair<string, string> kv2{ "Date", "日期" };
}

1.2 std::initializer_list

std::initializer_list的介绍文档:
http://www.cplusplus.com/reference/initializer_list/initializer_list/
std::initializer_list是什么类型:

int main()
{
	// the type of il is an initializer_list 
	auto il = { 10, 20, 30 };
	cout << typeid(il).name() << endl;

	initializer_list<int>::iterator it = il.begin();
	cout << it;
	// *it = 1; // 不能修改因为指向常量区
 	return 0;
}

std::initializer_list使用场景:
std::initializer_list一般是作为构造函数的参数
C++11对STL中的不少容器就增加
std::initializer_list作为参数的构造函数
这样初始化容器对象就更方便了
也可以作为operator=的参数
这样就可以用大括号赋值

以前我们模拟实现的vector
不支持{}初始化和赋值
现在可以通过加一个构造函数实现
{}初始化和赋值

vector(initializer_list<T> il)
{
	// 第一种方法用迭代器支持
	/*typename initializer_list::iterator it = il.begin();
	while (it != il.end())
	{
		push_back(*it);
		++it;
	}*/

	// 第二种方法范围for支持
	for (auto& e : il)
	{
		push_back(e);
	}
}

二、声明

2.1 decltype

关键字decltype将变量的类型
声明为表达式指定的类型

// decltype的一些使用使用场景
template<class T1, class T2>
void F(T1 t1, T2 t2)
{
decltype(t1 * t2) ret;
cout << typeid(ret).name() << endl;
}
int main()
{
const int x = 1;
double y = 2.2;
decltype(x * y) ret; // x*y是double类型,ret的类型是double
decltype(&x) p;      // p的类型是const int*
cout << typeid(ret).name() << endl;
cout << typeid(p).name() << endl;
F(1, 'a');
return 0;
}

// 以上都能通过auto解决,而下面则无法通过auto解决
// vector存储的类型跟x*y表达式返回值类型一致
vector<decltype(x * y)> v;

decltype可以推导一个表达式的类型
用这个类型实例化模板参数或定义对象

2.2 nullptr

由于C++中NULL被定义成字面量0
这样就可能回带来一些问题
因为0既能指针常量
又能表示整形常量
所以出于清晰和安全的角度考虑
C++11中新增了nullptr,用于表示空指针

三、STL中一些变化

3.1 新容器

用橘色圈起来是
C++11中的一些几个新容器
最有用的是unordered_map和
unordered_set
array和forward_list就比较鸡肋
【C++11(一)】列表初始化and右值引用_第2张图片
基本每个容器都增加了一些C++11的方法

  1. 增加支持initializer_list的构造函数
    使用更方便, 有一定价值
  2. 增加cbegin和cend系列迭代器接口
    比较鸡肋
  3. 移动构造和移动赋值
    vector (vector&& x);
  4. 支持右值引用相关插入接口函数

3和4价值非常大, 提高了拷贝效率

四、右值引用和移动语义

4.1 左值引用

我们之前学的引用叫左值引用
而C++11中新增了的右值引用语法特性
无论左值引用还是右值引用
都是给对象取别名

左值是一个表示数据的表达式
(如变量名或解引用的指针)
通过获取它的地址+可以对它赋值
左值可以出现在赋值符号的左边,也可以是右边
定义时const修饰符后的左值
不能给他赋值,但是可以取它的地址
左值引用就是给左值的引用,给左值取别名

// 以下的p、b、c、*p都是左值
int* p = new int(0);
int b = 1;
const int c = 2;
// 以下几个是对上面左值的左值引用
int*& rp = p;
int& rb = b;
const int& rc = c;
int& pvalue = *p;

4.2 右值引用

右值也是一个表示数据的表达式
如:字面常量、表达式返回值
函数返回值(这个不能左值引用返回)等等
右值只能出现在赋值符号的右边
右值不能取地址
右值引用就是对右值的引用,给右值取别名

double x = 1.1, y = 2.2;
// 以下几个都是常见的右值
10;
x + y;
fmin(x, y);
// 以下几个都是对右值的右值引用
int&& rr1 = 10;
double&& rr2 = x + y;
double&& rr3 = fmin(x, y);
// 这里编译会报错:error C2106: “=”: 左操作数必须为左值
10 = 1;
x + y = 1;
fmin(x, y) = 1;

需要注意的是:
右值不能取地址的
但是给右值取别名后
会导致右值被存储到特定位置
且可以取到该位置的地址
也就是说例如:不能取字面量10的地址
但是rr1引用后,可以对rr1取地址,也可以修改rr1
如果不想rr1被修改,可以用const int&& rr1 去引用

double x = 1.1, y = 2.2;
 int&& rr1 = 10;
 const double&& rr2 = x + y;
 rr1 = 20;
 rr2 = 5.5;  // 报错

4.3 左值引用与右值引用比较

左值:

  1. 左值引用只能引用左值,不能引用右值
    (权限会被放大)
  2. 但是const左值引用既可引用左值
    也可引用右值
 // 左值引用只能引用左值,不能引用右值。
    int a = 10;
    int& ra1 = a;   // ra为a的别名
    //int& ra2 = 10;   // 编译失败,因为10是右值
    // const左值引用既可引用左值,也可引用右值。
    const int& ra3 = 10;
    const int& ra4 = a;

右值:

  1. 右值引用只能右值,不能引用左值
  2. 但是右值引用可以move以后的左值
// 右值引用只能右值,不能引用左值。
 int&& r1 = 10;
 
 // error C2440: “初始化”: 无法从“int”转换为“int &&”
 // message : 无法将左值绑定到右值引用
 int a = 10;
 int&& r2 = a;
 // 右值引用可以引用move以后的左值
 int&& r3 = std::move(a);

std::move的功能:
将一个左值强制转化为右值(将亡值)
(但并不能移动任何东西)
然后通过右值引用使用该值,以用于移动语义
从实现上讲
std::move基本等同于一个类型转换:
static_cast(lvalue);
C++ 标准库使用比如vector::push_back等这类函数时
会对参数的对象进行复制,连数据也会复制
这会造成对象内存的额外创建
本来只是想把参数push_back进去就行了
通过std::move,可以避免不必要的拷贝操作
std::move是为性能而生
std::move是将对象的状态或者所有权
从一个对象转移到另一个对象
只是转移,没有内存的搬迁或者内存拷贝

4.4 右值引用使用场景和意义

右值分为纯右值和将亡值

// 模拟实现string
string s1("hello world");
// 如果s1是左值,调用正常拷贝构造走深拷贝
string ret1 = s1;

// 如果是右值(将亡值)还走深拷贝就很不划算
// 将亡值是即将被delete的值
string ret2 = (s1+'!');

这时可以重新写一个拷贝构造
用右值引用来接收传参
以此区分左值和右值
如果是右值把我置空跟你交换一下
【C++11(一)】列表初始化and右值引用_第3张图片
并且在函数传参上右值引用也能发挥作用

string to_string(int value)
{
	string ret;
	return ret; 
}

int main()
{
	string s = to_string(123);
	return 0;
}

返回值把值赋给临时对象有一次拷贝构造
临时对象把值赋给s又会有一次拷贝构造
编译器优化之后把值直接赋给s
减少一次拷贝构造

有了右值引用
【C++11(一)】列表初始化and右值引用_第4张图片
这样ret返回值不用调析构
s也不用调拷贝

总结:
左值引用减少拷贝, 提高效率
右值引用也是减少拷贝, 提高效率
但是他们的角度不同
左值引用是直接减少拷贝
右值引用是间接减少拷贝
识别出是左值还是右值
如果是右值, 则不再深拷贝
直接移动拷贝, 提高效率

五、模板中的&& 万能引用

模板中的&&不代表右值引用
而是万能引用,其既能接收左值又能接收右值
模板的万能引用只是提供了
能够接收同时接收左值引用和右值引用的能力

void Fun(int &x){ cout << "左值引用" << endl; }
void Fun(const int &x){ cout << "const 左值引用" << endl; }
void Fun(int &&x){ cout << "右值引用" << endl; }
void Fun(const int &&x){ cout << "const 右值引用" << endl; }

template<typename T>
void PerfectForward(T&& t)
{
 Fun(t);
}
int main()
{
 PerfectForward(10);           // 右值
 int a;
 PerfectForward(a);            // 左值
 PerfectForward(std::move(a)); // 右值
 const int b = 8;
 PerfectForward(b);      // const 左值
 PerfectForward(std::move(b)); // const 右值

但是引用类型的唯一作用就是限制接收的类型
后续使用中都退化成了左值
如果希望在传递过程中保持它的
左值或者右值的属性
就需要用到完美转发

5.1 完美转发

std::forward 完美转发
在传参的过程中保留对象原生类型属性

template<typename T>
void PerfectForward(T&& t)
{
 Fun(std::forward<T>(t));
}
int main()
{
 PerfectForward(10);           // 右值
 int a;
 PerfectForward(a);            // 左值
 PerfectForward(std::move(a)); // 右值
 const int b = 8;
 PerfectForward(b);      // const 左值
 PerfectForward(std::move(b)); // const 右值

【C++11(一)】列表初始化and右值引用_第5张图片
本篇博客完,感谢阅读
如有错误之处可评论指出
博主会耐心听取每条意见

你可能感兴趣的:(C++,c++,开发语言)