1、文章可能会优先更新在Github,个人博客【包括文章纠错与增加内容】。其它平台会晚一段时间。个人博客备用地址
2、如果Github很卡,可以在Gitee浏览,或者电子书在线阅读,个人博客。电子书在线阅读和个人博客加载速度比较快。
3、转载须知:转载请注明GitHub出处,让我们一起维护一个良好的技术创作环境!
4、如果你要提交 issue 或者 pr 的话建议到 Github 提交。
5、笔者会陆续更新,如果对你有所帮助,不妨Github点个Star~。你的Star是我创作的动力。
6、所有更新日志,写作计划,公告等均在此发布 ==> 时间轴。
关于 SOLID 原则,我们已经学过单一职责、开闭、里式替换、接口隔离这四个原则。今天,我们再来学习最后一个原则:依赖反转原则。在前面,我们讲到,单一职责原则和开闭原则的原理比较简单,但是,想要在实践中用好却比较难。而今天我们要讲到的依赖反转原则正好相反。这个原则用起来比较简单,但概念理解起来比较难。比如,下面这几个问题,你看看能否清晰地回答出来:
在讲“依赖反转原则”之前,我们先讲一讲“控制反转”。控制反转的英文翻译是 Inversion Of Control,缩写为 IOC。此处我要强调一下,暂时别把这个“IOC”跟 Spring 框架的 IOC 联系在一起。关于 Spring 的 IOC,我们待会儿还会讲到。我们先通过一个例子来看一下,什么是控制反转。
public class UserServiceTest {
public static boolean doTest() {
// ...
}
public static void main(String[] args) {//这部分逻辑可以放到框架中
if (doTest()) {
System.out.println("Test succeed.");
} else {
System.out.println("Test failed.");
}
}
}
在上面的代码中,所有的流程都由程序员来控制。如果我们抽象出一个下面这样一个框架,我们再来看,如何利用框架来实现同样的功能。具体的代码实现如下所示:
public abstract class TestCase {
public void run() {
if (doTest()) {
System.out.println("Test succeed.");
} else {
System.out.println("Test failed.");
}
}
public abstract boolean doTest();
}
public class JunitApplication {
private static final List<TestCase> testCases = new ArrayList<>();
public static void register(TestCase testCase) {
testCases.add(testCase);
}
public static final void main(String[] args) {
for (TestCase case: testCases) {
case.run();
}
}
把这个简化版本的测试框架引入到工程中之后,我们只需要在框架预留的扩展点,也就是 TestCase 类中的 doTest() 抽象函数中,填充具体的测试代码就可以实现之前的功能了,完全不需要写负责执行流程的 main() 函数了。 具体的代码如下所示:
public class UserServiceTest extends TestCase {
@Override
public boolean doTest() {
// ...
}
}
// 注册操作还可以通过配置的方式来实现,不需要程序员显示调用register()
JunitApplication.register(new UserServiceTest();
// 非依赖注入实现方式
public class Notification {
private MessageSender messageSender;
public Notification() {
this.messageSender = new MessageSender(); //此处有点像hardcode
}
public void sendMessage(String cellphone, String message) {
//...省略校验逻辑等...
this.messageSender.send(cellphone, message);
}
}
public class MessageSender {
public void send(String cellphone, String message) {
//....
}
}
// 使用Notification
Notification notification = new Notification();
// 依赖注入的实现方式
public class Notification {
private MessageSender messageSender;
// 通过构造函数将messageSender传递进来
public Notification(MessageSender messageSender) {
this.messageSender = messageSender;
}
public void sendMessage(String cellphone, String message) {
//...省略校验逻辑等...
this.messageSender.send(cellphone, message);
}
}
//使用Notification
MessageSender messageSender = new MessageSender();
Notification notification = new Notification(messageSender);
通过依赖注入的方式来将依赖的类对象传递进来,这样就提高了代码的扩展性,我们可以灵活地替换依赖的类。这一点在我们之前讲“开闭原则”的时候也提到过。当然,上面代码还有继续优化的空间,我们还可以把 MessageSender 定义成接口,基于接口而非实现编程。改造后的代码如下所示:
public class Notification {
private MessageSender messageSender;
public Notification(MessageSender messageSender) {
this.messageSender = messageSender;
}
public void sendMessage(String cellphone, String message) {
this.messageSender.send(cellphone, message);
}
}
public interface MessageSender {
void send(String cellphone, String message);
}
// 短信发送类
public class SmsSender implements MessageSender {
@Override
public void send(String cellphone, String message) {
//....
}
}
// 站内信发送类
public class InboxSender implements MessageSender {
@Override
public void send(String cellphone, String message) {
//....
}
}
//使用Notification
MessageSender messageSender = new SmsSender();
Notification notification = new Notification(messageSender);
实际上,你只需要掌握刚刚举的这个例子,就等于完全掌握了依赖注入。尽管依赖注入非常简单,但却非常有用,
弄懂了什么是“依赖注入”,我们再来看一下,什么是“依赖注入框架”。我们还是借用刚刚的例子来解释。在采用依赖注入实现的 Notification 类中,虽然我们不需要用类似 hard code 的方式,在类内部通过 new 来创建 MessageSender 对象,但是,这个创建对象、组装(或注入)对象的工作仅仅是被移动到了更上层代码而已,还是需要我们程序员自己来实现。具体代码如下所示:
public class Demo {
public static final void main(String args[]) {
MessageSender sender = new SmsSender(); //创建对象
Notification notification = new Notification(sender);//依赖注入
notification.sendMessage("13918942177", "短信验证码:2346");
}
}
KISS 原则的英文描述有好几个版本,比如下面这几个。
不过,仔细看你就会发现,它们要表达的意思其实差不多,翻译成中文就是:尽量保持简单。
我们知道,代码的可读性和可维护性是衡量代码质量非常重要的两个标准。而 KISS 原则就是保持代码可读和可维护的重要手段。代码足够简单,也就意味着很容易读懂,bug 比较难隐藏。即便出现 bug,修复起来也比较简单。不过,这条原则只是告诉我们,要保持代码“Simple and Stupid”,但并没有讲到,什么样的代码才是“Simple and Stupid”的,更没有给出特别明确的方法论,来指导如何开发出“Simple and Stupid”的代码。
所以,接下来,为了能让这条原则切实地落地,能够指导实际的项目开发,我就针对刚刚的这些问题来进一步讲讲我的理解。
我们先一起看一个例子。下面这三段代码可以实现同样一个功能:检查输入的字符串 ipAddress 是否是合法的 IP 地址。一个合法的 IP 地址由四个数字组成,并且通过“.”来进行分割。每组数字的取值范围是 0~255。第一组数字比较特殊,不允许为 0。对比这三段代码,你觉得哪一段代码最符合 KISS 原则呢?如果让你来实现这个功能,你会选择用哪种实现方法呢?你可以先自己思考一下,然后再看我下面的讲解。
// 第一种实现方式: 使用正则表达式
public boolean isValidIpAddressV1(String ipAddress) {
if (StringUtils.isBlank(ipAddress)) return false;
String regex = "^(1\\d{2}|2[0-4]\\d|25[0-5]|[1-9]\\d|[1-9])\\."
+ "(1\\d{2}|2[0-4]\\d|25[0-5]|[1-9]\\d|\\d)\\."
+ "(1\\d{2}|2[0-4]\\d|25[0-5]|[1-9]\\d|\\d)\\."
+ "(1\\d{2}|2[0-4]\\d|25[0-5]|[1-9]\\d|\\d)$";
return ipAddress.matches(regex);
}
// 第二种实现方式: 使用现成的工具类
public boolean isValidIpAddressV2(String ipAddress) {
if (StringUtils.isBlank(ipAddress)) return false;
String[] ipUnits = StringUtils.split(ipAddress, '.');
if (ipUnits.length != 4) {
return false;
}
for (int i = 0; i < 4; ++i) {
int ipUnitIntValue;
try {
ipUnitIntValue = Integer.parseInt(ipUnits[i]);
} catch (NumberFormatException e) {
return false;
}
if (ipUnitIntValue < 0 || ipUnitIntValue > 255) {
return false;
}
if (i == 0 && ipUnitIntValue == 0) {
return false;
}
}
return true;
}
// 第三种实现方式: 不使用任何工具类
public boolean isValidIpAddressV3(String ipAddress) {
char[] ipChars = ipAddress.toCharArray();
int length = ipChars.length;
int ipUnitIntValue = -1;
boolean isFirstUnit = true;
int unitsCount = 0;
for (int i = 0; i < length; ++i) {
char c = ipChars[i];
if (c == '.') {
if (ipUnitIntValue < 0 || ipUnitIntValue > 255) return false;
if (isFirstUnit && ipUnitIntValue == 0) return false;
if (isFirstUnit) isFirstUnit = false;
ipUnitIntValue = -1;
unitsCount++;
continue;
}
if (c < '0' || c > '9') {
return false;
}
if (ipUnitIntValue == -1) ipUnitIntValue = 0;
ipUnitIntValue = ipUnitIntValue * 10 + (c - '0');
}
if (ipUnitIntValue < 0 || ipUnitIntValue > 255) return false;
if (unitsCount != 3) return false;
return true;
}
刚刚我们提到,并不是代码行数越少就越“简单”,还要考虑逻辑复杂度、实现难度、代码的可读性等。那如果一段代码的逻辑复杂、实现难度大、可读性也不太好,是不是就一定违背 KISS 原则呢?在回答这个问题之前,我们先来看下面这段代码:
// KMP algorithm: a, b分别是主串和模式串;n, m分别是主串和模式串的长度。
public static int kmp(char[] a, int n, char[] b, int m) {
int[] next = getNexts(b, m);
int j = 0;
for (int i = 0; i < n; ++i) {
while (j > 0 && a[i] != b[j]) { // 一直找到a[i]和b[j]
j = next[j - 1] + 1;
}
if (a[i] == b[j]) {
++j;
}
if (j == m) { // 找到匹配模式串的了
return i - m + 1;
}
}
return -1;
}
// b表示模式串,m表示模式串的长度
private static int[] getNexts(char[] b, int m) {
int[] next = new int[m];
next[0] = -1;
int k = -1;
for (int i = 1; i < m; ++i) {
while (k != -1 && b[k + 1] != b[i]) {
k = next[k];
}
if (b[k + 1] == b[i]) {
++k;
}
next[i] = k;
}
return next;
}
这段代码是KMP 字符串匹配算法的代码实现。这段代码完全符合我们刚提到的逻辑复杂、实现难度大、可读性差的特点,但它并不违反 KISS 原则。为什么这么说呢?
KMP 算法以快速高效著称。当我们需要处理长文本字符串匹配问题(几百 MB 大小文本内容的匹配),或者字符串匹配是某个产品的核心功能(比如 Vim、Word 等文本编辑器),又或者字符串匹配算法是系统性能瓶颈的时候,我们就应该选择尽可能高效的 KMP 算法。而 KMP 算法本身具有逻辑复杂、实现难度大、可读性差的特点。本身就复杂的问题,用复杂的方法解决,并不违背 KISS 原则。
不过,平时的项目开发中涉及的字符串匹配问题,大部分都是针对比较小的文本。在这种情况下,直接调用编程语言提供的现成的字符串匹配函数就足够了。如果非得用 KMP 算法、BM 算法来实现字符串匹配,那就真的违背 KISS 原则了。也就是说,同样的代码,在某个业务场景下满足 KISS 原则,换一个应用场景可能就不满足了。
实际上,我们前面已经讲到了一些方法。这里我稍微总结一下。
Don’t Repeat Yourself。中文直译为:不要重复自己。将它应用在编程中,可以理解为:不要写重复的代码。DRY 原则的定义非常简单,我就不再过度解读。今天,我们主要讲三种典型的代码重复情况,它们分别是:实现逻辑重复、功能语义重复和代码执行重复。这三种代码重复,有的看似违反 DRY,实际上并不违反;有的看似不违反,实际上却违反了。
我们先来看下面这样一段代码是否违反了 DRY 原则。如果违反了,你觉得应该如何重构,才能让它满足 DRY 原则?如果没有违反,那又是为什么呢?
public class UserAuthenticator {
public void authenticate(String username, String password) {
if (!isValidUsername(username)) {
// ...throw InvalidUsernameException...
}
if (!isValidPassword(password)) {
// ...throw InvalidPasswordException...
}
//...省略其他代码...
}
private boolean isValidUsername(String username) {
// check not null, not empty
if (StringUtils.isBlank(username)) {
return false;
}
// check length: 4~64
int length = username.length();
if (length < 4 || length > 64) {
return false;
}
// contains only lowcase characters
if (!StringUtils.isAllLowerCase(username)) {
return false;
}
// contains only a~z,0~9,dot
for (int i = 0; i < length; ++i) {
char c = username.charAt(i);
if (!(c >= 'a' && c <= 'z') || (c >= '0' && c <= '9') || c == '.') {
return false;
}
}
return true;
}
private boolean isValidPassword(String password) {
// check not null, not empty
if (StringUtils.isBlank(password)) {
return false;
}
// check length: 4~64
int length = password.length();
if (length < 4 || length > 64) {
return false;
}
// contains only lowcase characters
if (!StringUtils.isAllLowerCase(password)) {
return false;
}
// contains only a~z,0~9,dot
for (int i = 0; i < length; ++i) {
char c = password.charAt(i);
if (!(c >= 'a' && c <= 'z') || (c >= '0' && c <= '9') || c == '.') {
return false;
}
}
return true;
}
}
代码很简单,我就不做过多解释了。在代码中,有两处非常明显的重复的代码片段:isValidUserName() 函数和 isValidPassword() 函数。重复的代码被敲了两遍,或者简单 copy-paste 了一下,看起来明显违反 DRY 原则。为了移除重复的代码,我们对上面的代码做下重构,将 isValidUserName() 函数和 isValidPassword() 函数,合并为一个更通用的函数 isValidUserNameOrPassword()。重构后的代码如下所示:
public class UserAuthenticatorV2 {
public void authenticate(String userName, String password) {
if (!isValidUsernameOrPassword(userName)) {
// ...throw InvalidUsernameException...
}
if (!isValidUsernameOrPassword(password)) {
// ...throw InvalidPasswordException...
}
}
private boolean isValidUsernameOrPassword(String usernameOrPassword) {
//省略实现逻辑
//跟原来的isValidUsername()或isValidPassword()的实现逻辑一样...
return true;
}
}
public boolean isValidIp(String ipAddress) {
if (StringUtils.isBlank(ipAddress)) return false;
String regex = "^(1\\d{2}|2[0-4]\\d|25[0-5]|[1-9]\\d|[1-9])\\."
+ "(1\\d{2}|2[0-4]\\d|25[0-5]|[1-9]\\d|\\d)\\."
+ "(1\\d{2}|2[0-4]\\d|25[0-5]|[1-9]\\d|\\d)\\."
+ "(1\\d{2}|2[0-4]\\d|25[0-5]|[1-9]\\d|\\d)$";
return ipAddress.matches(regex);
}
public boolean checkIfIpValid(String ipAddress) {
if (StringUtils.isBlank(ipAddress)) return false;
String[] ipUnits = StringUtils.split(ipAddress, '.');
if (ipUnits.length != 4) {
return false;
}
for (int i = 0; i < 4; ++i) {
int ipUnitIntValue;
try {
ipUnitIntValue = Integer.parseInt(ipUnits[i]);
} catch (NumberFormatException e) {
return false;
}
if (ipUnitIntValue < 0 || ipUnitIntValue > 255) {
return false;
}
if (i == 0 && ipUnitIntValue == 0) {
return false;
}
}
return true;
}
前两个例子一个是实现逻辑重复,一个是语义重复,我们再来看第三个例子。其中,UserService 中 login() 函数用来校验用户登录是否成功。如果失败,就返回异常;如果成功,就返回用户信息。具体代码如下所示:
public class UserService {
private UserRepo userRepo;//通过依赖注入或者IOC框架注入
public User login(String email, String password) {
boolean existed = userRepo.checkIfUserExisted(email, password);
if (!existed) {
// ... throw AuthenticationFailureException...
}
User user = userRepo.getUserByEmail(email);
return user;
}
}
public class UserRepo {
public boolean checkIfUserExisted(String email, String password) {
if (!EmailValidation.validate(email)) {
// ... throw InvalidEmailException...
}
if (!PasswordValidation.validate(password)) {
// ... throw InvalidPasswordException...
}
//...query db to check if email&password exists...
}
public User getUserByEmail(String email) {
if (!EmailValidation.validate(email)) {
// ... throw InvalidEmailException...
}
//...query db to get user by email...
}
}
public class UserService {
private UserRepo userRepo;//通过依赖注入或者IOC框架注入
public User login(String email, String password) {
if (!EmailValidation.validate(email)) {
// ... throw InvalidEmailException...
}
if (!PasswordValidation.validate(password)) {
// ... throw InvalidPasswordException...
}
User user = userRepo.getUserByEmail(email);
if (user == null || !password.equals(user.getPassword()) {
// ... throw AuthenticationFailureException...
}
return user;
}
}
public class UserRepo {
public boolean checkIfUserExisted(String email, String password) {
//...query db to check if email&password exists
}
public User getUserByEmail(String email) {
//...query db to get user by email...
}
}
我们首先来区分三个概念:代码复用性(Code Reusability)、代码复用(Code Resue)和 DRY 原则。代码复用表示一种行为:我们在开发新功能的时候,尽量复用已经存在的代码。代码的可复用性表示一段代码可被复用的特性或能力:我们在编写代码的时候,让代码尽量可复用。DRY 原则是一条原则:不要写重复的代码。从定义描述上,它们好像有点类似,但深究起来,三者的区别还是蛮大的。
首先,“不重复”并不代表“可复用”。在一个项目代码中,可能不存在任何重复的代码,但也并不表示里面有可复用的代码,不重复和可复用完全是两个概念。所以,从这个角度来说,DRY 原则跟代码的可复用性讲的是两回事。
其次,“复用”和“可复用性”关注角度不同。代码“可复用性”是从代码开发者的角度来讲的,“复用”是从代码使用者的角度来讲的。比如,A 同事编写了一个 UrlUtils 类,代码的“可复用性”很好。B 同事在开发新功能的时候,直接“复用”A 同事编写的 UrlUtils 类。尽管复用、可复用性、DRY 原则这三者从理解上有所区别,但实际上要达到的目的都是类似的,都是为了减少代码量,提高代码的可读性、可维护性。除此之外,复用已经经过测试的老代码,bug 会比从零重新开发要少。
“复用”这个概念不仅可以指导细粒度的模块、类、函数的设计开发,实际上,一些框架、类库、组件等的产生也都是为了达到复用的目的。比如,Spring 框架、Google Guava 类库、UI 组件等等。
实际上,我们前面已经讲到过很多提高代码可复用性的手段,今天算是集中总结一下,我总结了 7 条,具体如下。
减少代码耦合
对于高度耦合的代码,当我们希望复用其中的一个功能,想把这个功能的代码抽取出来成为一个独立的模块、类或者函数的时候,往往会发现牵一发而动全身。移动一点代码,就要牵连到很多其他相关的代码。所以,高度耦合的代码会影响到代码的复用性,我们要尽量减少代码耦合。
满足单一职责原则
我们前面讲过,如果职责不够单一,模块、类设计得大而全,那依赖它的代码或者它依赖的代码就会比较多,进而增加了代码的耦合。根据上一点,也就会影响到代码的复用性。相反,越细粒度的代码,代码的通用性会越好,越容易被复用。
模块化
这里的“模块”,不单单指一组类构成的模块,还可以理解为单个类、函数。我们要善于将功能独立的代码,封装成模块。独立的模块就像一块一块的积木,更加容易复用,可以直接拿来搭建更加复杂的系统。
业务与非业务逻辑分离
越是跟业务无关的代码越是容易复用,越是针对特定业务的代码越难复用。所以,为了复用跟业务无关的代码,我们将业务和非业务逻辑代码分离,抽取成一些通用的框架、类库、组件等。
通用代码下沉
从分层的角度来看,越底层的代码越通用、会被越多的模块调用,越应该设计得足够可复用。一般情况下,在代码分层之后,为了避免交叉调用导致调用关系混乱,我们只允许上层代码调用下层代码及同层代码之间的调用,杜绝下层代码调用上层代码。所以,通用的代码我们尽量下沉到更下层。
继承、多态、抽象、封装
在讲面向对象特性的时候,利用继承,可以将公共的代码抽取到父类,子类复用父类的属性和方法。利用多态,我们可以动态地替换一段代码的部分逻辑,让这段代码可复用。除此之外,抽象和封装,从更加广义的层面、而非狭义的面向对象特性的层面来理解的话,越抽象、越不依赖具体的实现,越容易复用。代码封装成模块,隐藏可变的细节、暴露不变的接口,就越容易复用。
应用模板等设计模式
一些设计模式,也能提高代码的复用性。比如,模板模式利用了多态来实现,可以灵活地替换其中的部分代码,整个流程模板代码可复用。关于应用设计模式提高代码复用性这一部分,我们留在后面慢慢来讲解。除了刚刚我们讲到的几点,还有一些跟编程语言相关的特性,也能提高代码的复用性,比如泛型编程等。实际上,除了上面讲到的这些方法之外,复用意识也非常重要。在写代码的时候,我们要多去思考一下,这
我们讲最后一个设计原则:迪米特法则。尽管它不像 SOLID、KISS、DRY 原则那样,人尽皆知,但它却非常实用。利用这个原则,能够帮我们实现代码的“高内聚、松耦合”。今天,我们就围绕下面几个问题,并结合两个代码实战案例,来深入地学习这个法则。
那到底什么是“高内聚”呢?
所谓高内聚,就是指相近的功能应该放到同一个类中,不相近的功能不要放到同一个类中。相近的功能往往会被同时修改,放到同一个类中,修改会比较集中,代码容易维护。实际上,我们前面讲过的单一职责原则是实现代码高内聚非常有效的设计原则。
我们再来看一下,什么是“松耦合”?
所谓松耦合是说,在代码中,类与类之间的依赖关系简单清晰。即使两个类有依赖关系,一个类的代码改动不会或者很少导致依赖类的代码改动。实际上,我们前面讲的依赖注入、接口隔离、基于接口而非实现编程,以及今天讲的迪米特法则,都是为了实现代码的松耦合
最后,我们来看一下,“内聚”和“耦合”之间的关系
前面也提到,“高内聚”有助于“松耦合”,同理,“低内聚”也会导致“紧耦合”。关于这一点,我画了一张对比图来解释。图中左边部分的代码结构是“高内聚、松耦合”;右边部分正好相反,是“低内聚、紧耦合”。
迪米特法则的英文翻译是:Law of Demeter,缩写是 LOD。单从这个名字上来看,我们完全猜不出这个原则讲的是什么。不过,它还有另外一个更加达意的名字,叫作最小知识原则,英文翻译为:The Least Knowledge Principle。
关于这个设计原则,我们先来看一下它最原汁原味的英文定义:
Each unit should have only limited knowledge about other units: only units “closely” related to the current unit. Or: Each unit should only talk to its friends; Don’t talk to strangers.
我们把它直译成中文,就是下面这个样子:
每个模块(unit)只应该了解那些与它关系密切的模块(units: only units “closely” related to the current unit)的有限知识(knowledge)。或者说,每个模块只和自己的朋友“说话”(talk),不和陌生人“说话”(talk)。
我们之前讲过,大部分设计原则和思想都非常抽象,有各种各样的解读,要想灵活地应用到实际的开发中,需要有实战经验的积累。迪米特法则也不例外。所以,我结合我自己的理解和经验,对刚刚的定义重新描述一下。注意,为了统一讲解,我把定义描述中的“模块”替换成了“类”。
不该有直接依赖关系的类之间,不要有依赖;有依赖关系的类之间,尽量只依赖必要的接口(也就是定义中的“有限知识”)。从上面的描述中,我们可以看出,迪米特法则包含前后两部分,这两部分讲的是两件事情,我用两个实战案例分别来解读一下。
public class NetworkTransporter {
// 省略属性和其他方法...
public Byte[] send(HtmlRequest htmlRequest) {
//...
}
}
public class HtmlDownloader {
private NetworkTransporter transporter;//通过构造函数或IOC注入
public Html downloadHtml(String url) {
Byte[] rawHtml = transporter.send(new HtmlRequest(url));
return new Html(rawHtml);
}
}
public class Document {
private Html html;
private String url;
public Document(String url) {
this.url = url;
HtmlDownloader downloader = new HtmlDownloader();
this.html = downloader.downloadHtml(url);
}
//...
}
public class NetworkTransporter {
// 省略属性和其他方法...
public Byte[] send(String address, Byte[] data) {
//...
}
}
我们再来看 HtmlDownloader 类。这个类的设计没有问题。不过,我们修改了 NetworkTransporter 的 send() 函数的定义,而这个类用到了 send() 函数,所以我们需要对它做相应的修改,修改后的代码如下所示
public class HtmlDownloader {
private NetworkTransporter transporter;//通过构造函数或IOC注入
// HtmlDownloader这里也要有相应的修改
public Html downloadHtml(String url) {
HtmlRequest htmlRequest = new HtmlRequest(url);
Byte[] rawHtml = transporter.send(
htmlRequest.getAddress(), htmlRequest.getContent().getBytes());
return new Html(rawHtml);
}
}
最后,我们来看下 Document 类。这个类的问题比较多,主要有三点。第一,构造函数中的 downloader.downloadHtml() 逻辑复杂,耗时长,不应该放到构造函数中,会影响代码的可测试性。代码的可测试性我们后面会讲到,这里你先知道有这回事就可以了。第二,HtmlDownloader 对象在构造函数中通过 new 来创建,违反了基于接口而非实现编程的设计思想,也会影响到代码的可测试性。第三,从业务含义上来讲,Document 网页文档没必要依赖 HtmlDownloader 类,违背了迪米特法则。
虽然 Document 类的问题很多,但修改起来比较简单,只要一处改动就可以解决所有问题。修改之后的代码如下所示:
public class Document {
private Html html;
private String url;
public Document(String url, Html html) {
this.html = html;
this.url = url;
}
//...
}
// 通过一个工厂方法来创建Document
public class DocumentFactory {
private HtmlDownloader downloader;
public DocumentFactory(HtmlDownloader downloader) {
this.downloader = downloader;
}
public Document createDocument(String url) {
Html html = downloader.downloadHtml(url);
return new Document(url, html);
}
}
现在,我们再来看一下这条原则中的后半部分:“有依赖关系的类之间,尽量只依赖必要的接口”。我们还是结合一个例子来讲解。下面这段代码非常简单,Serialization 类负责对象的序列化和反序列化
public class Serialization {
public String serialize(Object object) {
String serializedResult = ...;
//...
return serializedResult;
}
public Object deserialize(String str) {
Object deserializedResult = ...;
//...
return deserializedResult;
}
}
public class Serializer {
public String serialize(Object object) {
String serializedResult = ...;
...
return serializedResult;
}
}
public class Deserializer {
public Object deserialize(String str) {
Object deserializedResult = ...;
...
return deserializedResult;
}
}
public interface Serializable {
String serialize(Object object);
}
public interface Deserializable {
Object deserialize(String text);
}
public class Serialization implements Serializable, Deserializable {
@Override
public String serialize(Object object) {
String serializedResult = ...;
...
return serializedResult;
}
@Override
public Object deserialize(String str) {
Object deserializedResult = ...;
...
return deserializedResult;
}
}
public class DemoClass_1 {
private Serializable serializer;
public Demo(Serializable serializer) {
this.serializer = serializer;
}
//...
}
public class DemoClass_2 {
private Deserializable deserializer;
public Demo(Deserializable deserializer) {
this.deserializer = deserializer;
}
//...
}
public class Serializer { // 参看JSON的接口定义
public String serialize(Object object) { //... }
public String serializeMap(Map map) { //... }
public String serializeList(List list) { //... }
public Object deserialize(String objectString) { //... }
public Map deserializeMap(String mapString) { //... }
public List deserializeList(String listString) { //... }
}
在这种场景下,第二种设计思路要更好些。因为基于之前的应用场景来说,大部分代码只需要用到序列化的功能。对于这部分使用者,没必要了解反序列化的“知识”,而修改之后的 Serialization 类,反序列化的“知识”,从一个函数变成了三个。一旦任一反序列化操作有代码改动,我们都需要检查、测试所有依赖 Serialization 类的代码是否还能正常工作。为了减少耦合和测试工作量,我们应该按照迪米特法则,将反序列化和序列化的功能隔离开来。