【数据开发】pyspark入门与RDD编程
pyspark的用途
spark与pyspark的关系
pysql和pyspark的区别
pyspark安装与使用
pip install pyspark
Spark提供了6大组件:
Spark Core
Spark SQL
Spark Streaming
Spark MLlib
Spark GraphX
SparkR
这些组件解决了使用Hadoop时碰到的特定问题。
RDD模型是什么?
RDD ( Resilient Distributed Dataset )叫做弹性分布式数据集,是Spark的一种数据抽象集合。
它可以被执行在分布式的集群上进行各种操作,而且有较强的容错机制。RDD可以被分为若干个分区,每一个分区就是一个数据集片段,从而可以支持分布式计算。
通俗点来讲,可以将 RDD 理解为一个分布式对象集合,本质上是一个只读的分区记录集合。每个 RDD 可以分成多个分区,每个分区就是一个数据集片段。一个 RDD 的不同分区可以保存到集群中的不同结点上,从而可以在集群中的不同结点上进行并行计算。
RDD运行时相关的关键名词:
RDD任务调度的原理(血缘关系)
Spark的部署模式有哪些
Shuffle操作是什么
RDD操作与惰性执行
对于 Spark 处理的大量数据而言,会将数据切分后放入RDD作为Spark 的基本数据结构,开发者可以在 RDD 上进行丰富的操作,之后 Spark 会根据操作调度集群资源进行计算。
RDD 的操作分为转化(Transformation)操作和行动(Action)操作。转化操作就是从一个 RDD 产生一个新的 RDD,而行动操作就是进行实际的计算。
RDD 的操作是惰性的,当 RDD 执行转化操作的时候,实际计算并没有被执行,只有当 RDD 执行行动操作时才会促发计算任务提交,从而执行相应的计算操作。
RDD缓存优化
两大类示例:
import os
import pyspark
from pyspark import SparkContext, SparkConf
conf = SparkConf().setAppName("test_SamShare").setMaster("local[4]")
sc = SparkContext(conf=conf)
# 使用 parallelize方法直接实例化一个RDD
rdd = sc.parallelize(range(1,11),4) # 这里的 4 指的是分区数量
rdd.take(100)
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
"""
----------------------------------------------
Transform算子解析
----------------------------------------------
"""
# 以下的操作由于是Transform操作,因为我们需要在最后加上一个collect算子用来触发计算。
# 1. map: 和python差不多,map转换就是对每一个元素进行一个映射
rdd = sc.parallelize(range(1, 11), 4)
rdd_map = rdd.map(lambda x: x*2)
print("原始数据:", rdd.collect())
print("扩大2倍:", rdd_map.collect())
# 原始数据: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# 扩大2倍: [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
# 2. flatMap: 这个相比于map多一个flat(压平)操作,顾名思义就是要把高维的数组变成一维
rdd2 = sc.parallelize(["hello SamShare", "hello PySpark"])
print("原始数据:", rdd2.collect())
print("直接split之后的map结果:", rdd2.map(lambda x: x.split(" ")).collect())
print("直接split之后的flatMap结果:", rdd2.flatMap(lambda x: x.split(" ")).collect())
# 直接split之后的map结果: [['hello', 'SamShare'], ['hello', 'PySpark']]
# 直接split之后的flatMap结果: ['hello', 'SamShare', 'hello', 'PySpark']
# 3. filter: 过滤数据
rdd = sc.parallelize(range(1, 11), 4)
print("原始数据:", rdd.collect())
print("过滤奇数:", rdd.filter(lambda x: x % 2 == 0).collect())
# 原始数据: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# 过滤奇数: [2, 4, 6, 8, 10]
# 4. distinct: 去重元素
rdd = sc.parallelize([2, 2, 4, 8, 8, 8, 8, 16, 32, 32])
print("原始数据:", rdd.collect())
print("去重数据:", rdd.distinct().collect())
# 原始数据: [2, 2, 4, 8, 8, 8, 8, 16, 32, 32]
# 去重数据: [4, 8, 16, 32, 2]
# 5. reduceByKey: 根据key来映射数据
from operator import add
rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)])
print("原始数据:", rdd.collect())
print("原始数据:", rdd.reduceByKey(add).collect())
# 原始数据: [('a', 1), ('b', 1), ('a', 1)]
# 原始数据: [('b', 1), ('a', 2)]
# 6. mapPartitions: 根据分区内的数据进行映射操作
rdd = sc.parallelize([1, 2, 3, 4], 2)
def f(iterator):
yield sum(iterator)
print(rdd.collect())
print(rdd.mapPartitions(f).collect())
# [1, 2, 3, 4]
# [3, 7]
# 7. sortBy: 根据规则进行排序
tmp = [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)]
print(sc.parallelize(tmp).sortBy(lambda x: x[0]).collect())
print(sc.parallelize(tmp).sortBy(lambda x: x[1]).collect())
# [('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)]
# [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)]
# 8. subtract: 数据集相减, Return each value in self that is not contained in other.
x = sc.parallelize([("a", 1), ("b", 4), ("b", 5), ("a", 3)])
y = sc.parallelize([("a", 3), ("c", None)])
print(sorted(x.subtract(y).collect()))
# [('a', 1), ('b', 4), ('b', 5)]
# 9. union: 合并两个RDD
rdd = sc.parallelize([1, 1, 2, 3])
print(rdd.union(rdd).collect())
# [1, 1, 2, 3, 1, 1, 2, 3]
# 10. interp: 取两个RDD的交集,同时有去重的功效
rdd1 = sc.parallelize([1, 10, 2, 3, 4, 5, 2, 3])
rdd2 = sc.parallelize([1, 6, 2, 3, 7, 8])
print(rdd1.interp(rdd2).collect())
# [1, 2, 3]
# 11. cartesian: 生成笛卡尔积
rdd = sc.parallelize([1, 2])
print(sorted(rdd.cartesian(rdd).collect()))
# [(1, 1), (1, 2), (2, 1), (2, 2)]
# 12. zip: 拉链合并,需要两个RDD具有相同的长度以及分区数量
x = sc.parallelize(range(0, 5))
y = sc.parallelize(range(1000, 1005))
print(x.collect())
print(y.collect())
print(x.zip(y).collect())
# [0, 1, 2, 3, 4]
# [1000, 1001, 1002, 1003, 1004]
# [(0, 1000), (1, 1001), (2, 1002), (3, 1003), (4, 1004)]
# 13. zipWithIndex: 将RDD和一个从0开始的递增序列按照拉链方式连接。
rdd_name = sc.parallelize(["LiLei", "Hanmeimei", "Lily", "Lucy", "Ann", "Dachui", "RuHua"])
rdd_index = rdd_name.zipWithIndex()
print(rdd_index.collect())
# [('LiLei', 0), ('Hanmeimei', 1), ('Lily', 2), ('Lucy', 3), ('Ann', 4), ('Dachui', 5), ('RuHua', 6)]
# 14. groupByKey: 按照key来聚合数据
rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)])
print(rdd.collect())
print(sorted(rdd.groupByKey().mapValues(len).collect()))
print(sorted(rdd.groupByKey().mapValues(list).collect()))
# [('a', 1), ('b', 1), ('a', 1)]
# [('a', 2), ('b', 1)]
# [('a', [1, 1]), ('b', [1])]
# 15. sortByKey:
tmp = [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)]
print(sc.parallelize(tmp).sortByKey(True, 1).collect())
# [('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)]
# 16. join:
x = sc.parallelize([("a", 1), ("b", 4)])
y = sc.parallelize([("a", 2), ("a", 3)])
print(sorted(x.join(y).collect()))
# [('a', (1, 2)), ('a', (1, 3))]
# 17. leftOuterJoin/rightOuterJoin
x = sc.parallelize([("a", 1), ("b", 4)])
y = sc.parallelize([("a", 2)])
print(sorted(x.leftOuterJoin(y).collect()))
# [('a', (1, 2)), ('b', (4, None))]
"""
----------------------------------------------
Action算子解析
----------------------------------------------
"""
# 1. collect: 指的是把数据都汇集到driver端,便于后续的操作
rdd = sc.parallelize(range(0, 5))
rdd_collect = rdd.collect()
print(rdd_collect)
# [0, 1, 2, 3, 4]
# 2. first: 取第一个元素
sc.parallelize([2, 3, 4]).first()
# 2
# 3. collectAsMap: 转换为dict,使用这个要注意了,不要对大数据用,不然全部载入到driver端会爆内存
m = sc.parallelize([(1, 2), (3, 4)]).collectAsMap()
m
# {1: 2, 3: 4}
# 4. reduce: 逐步对两个元素进行操作
rdd = sc.parallelize(range(10),5)
print(rdd.reduce(lambda x,y:x+y))
# 45
# 5. countByKey/countByValue:
rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)])
print(sorted(rdd.countByKey().items()))
print(sorted(rdd.countByValue().items()))
# [('a', 2), ('b', 1)]
# [(('a', 1), 2), (('b', 1), 1)]
# 6. take: 相当于取几个数据到driver端
rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)])
print(rdd.take(5))
# [('a', 1), ('b', 1), ('a', 1)]
# 7. saveAsTextFile: 保存rdd成text文件到本地
text_file = "./data/rdd.txt"
rdd = sc.parallelize(range(5))
rdd.saveAsTextFile(text_file)
# 8. takeSample: 随机取数
rdd = sc.textFile("./test/data/hello_samshare.txt", 4) # 这里的 4 指的是分区数量
rdd_sample = rdd.takeSample(True, 2, 0) # withReplacement 参数1:代表是否是有放回抽样
rdd_sample
# 9. foreach: 对每一个元素执行某种操作,不生成新的RDD
rdd = sc.parallelize(range(10), 5)
accum = sc.accumulator(0)
rdd.foreach(lambda x: accum.add(x))
print(accum.value)
# 45
创建会话
import pyspark
from pyspark.sql import SparkSession
session = SparkSession.builder.appName('First App').getOrCreate()
session
spark_session = SparkSession.builder.getOrCreate()
table_data = [row.asDict() for row in spark_session.sql('''
SELECT
xxx,
id,
xxx,
xxx,
from aaa.bbb
where ds = {} and xxx != 0
'''.format(newds).collect()]
读取数据
# 支持csv格式jdbc加载选项选项orc脚本模式表文本
data = session.read.csv('Datasets/titanic.csv')
# 检索带有标题的数据集
data = session.read.option.('header', 'true').csv('Datasets/titanic.csv')
data.show()
# 类似于pandas中使用info()
data.printSchema()
# 文本
data=sc.textFile("file://home/README.md")
data.saveAsTextFile(outputFile)
# json
import json
data=input.map(lambdax:json.loads(x))
data.filter(lambda x:x["lovesPandas"]).map(lambda x:json.dumps(x)).saveAsTextFile(outputFile)
数据过滤
select:
用于过滤符合条件的行,返回一个新的dataframe,支持选择一个或多个列。
df.select("列名")
df.select(col("列名"))
df.select(expr("sql表达式"))
dataframe.select(column_name)
dataframe.select(column_1, column_2, .., column_N)
collect:
返回一个list,每个元素为Row。可以通过df.collect()方法将dataframe转换为可遍历的dict列表。
filter:
data = data.filter(data['Survived'] == 1)
data.show()
数据清洗
# 添加一列
data = data.withColumn('Age_after_3_y', data['Age']+3)
# 删除一列
dataframe = dataframe.drop('column_name in strings')
data = data.drop('Age_after_3_y')
dataframe.show()
# 改列名
data = data.na.drop(how = 'any', thresh = 2)
data.show()
多表计算
join:类似于sql的join操作
df1.join(df2, 'on的列名', 'join选项')
其中join选项默认是'inner',可以自行选择其他join方法如:left, full, right, leftouter...
编程参考:1,2,3,4,5