- c++ stl库有哪些技术
C++ 老炮儿的技术栈
c++算法学习笔记c++
C++STL(标准模板库)包含以下一些重要技术:容器-序列容器:如vector(动态数组),支持快速随机访问和尾部插入/删除;list(双向链表),适合频繁的插入和删除操作;deque(双端队列),能在两端高效地进行插入和删除。-关联容器:像map(键值对映射),基于红黑树实现,提供快速的查找、插入和删除操作;set(集合),同样基于红黑树,元素唯一且有序。迭代器提供了一种统一的方式来访问容器中的
- 设计模式之工厂模式的优缺点
C++ 老炮儿的技术栈
算法c++学习笔记
工厂模式是一种创建对象的设计模式,它将对象的创建和使用分离。以下是工厂模式的优缺点:优点-解耦对象的创建和使用:使得代码的依赖关系更加清晰,使用者不需要了解对象的具体创建过程,只需要关心如何使用对象,降低了代码的耦合度。-提高可维护性和可扩展性:当需要创建新的对象或者修改对象的创建逻辑时,只需要在工厂类中进行修改,而不需要在所有使用该对象的地方进行修改,便于代码的维护和扩展。-便于代码复用:工厂类
- 决策树算法及其python实例
m0_74831463
算法决策树python
一、决策数的概念什么是决策树算法呢?决策树(DecisionTree)是一种基本的分类与回归方法,本文主要讨论分类决策树。决策树模型呈树形结构,在分类问题中,表示基于特征对数据进行分类的过程。它可以认为是if-then规则的集合。每个内部节点表示在属性上的一个测试,每个分支代表一个测试输出,每个叶节点代表一种类别二、决策树的构造1、决策树的构造步骤输入:训练集D={(21,11),(z2,32),
- 架构演进的方式
pumpkin84514
架构设计架构
架构演进过程中,常用的三种模式是拆迁者模式、绞杀者模式和修缮者模式。它们代表了三种不同的演进路径,适用于不同的业务环境和技术场景。下面详细解释每种模式的内容、使用场景,并对比它们的差异。1.拆迁者模式内容拆迁者模式(也称为重建模式)是一种彻底重构现有系统的方式。通常,在这种模式下,原有系统被完全放弃,并用一个全新的系统替代。在这种情况下,架构和代码需要从头开始重新设计和实现。使用场景系统老化严重:
- 大模型在冠心病风险预测及临床方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能机器学习python
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究方法与创新点二、大模型预测冠心病风险原理与方法2.1数据收集与预处理2.1.1数据来源2.1.2数据清洗与整理2.2特征工程2.2.1特征提取2.2.2特征选择与优化2.3模型选择与训练2.3.1常用模型介绍2.3.2模型训练过程三、术前风险预测与手术方案制定3.1术前风险预测指标与模型应用3.2基于风险预测的手术方案制定3.3案例分析
- 虚拟机如何扩容磁盘
克里斯蒂亚诺罗纳尔多阿维罗
运维linux服务器
在日常的虚拟化环境中,虚拟机的磁盘空间不足是一个常见的问题。当虚拟机磁盘空间不够用时,扩容磁盘是一个常见的解决方案。本文将详细介绍如何在虚拟机中扩容磁盘,包含操作步骤,并解释在扩容过程中为什么可以直接删除原有分区。步骤1:扩容虚拟机磁盘首先,我们需要在虚拟化平台上扩展虚拟机的磁盘大小。以下是两种常见虚拟化平台(VMware和VirtualBox)扩容磁盘的步骤:VMware打开VMware管理控制
- OpenCV图像拼接(1)自动校准之校准旋转相机的函数calibrateRotatingCamera()
村北头的码农
OpenCVopencv人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::calibrateRotatingCamera是OpenCV中用于校准旋转相机的函数。它特别适用于那种相机相对于一个固定的场景进行纯旋转运动的情况,比如在全景拼接过程中。此函数可以从一系列单应性矩阵(HomographyMatrices)中
- bp抓IOS的包
仙女很美哦
httpudphttpswebsocket网络安全网络协议tcp/ip
抓包工具的原理与使用指南一、抓包工具的原理抓包工具的核心原理是通过代理设置,使得浏览器访问请求经过抓包工具,再转发到服务器。具体流程如下:访问流程:浏览器>>抓包工具>>服务器响应流程:服务器>>抓包工具>>浏览器1.HTTP数据的抓包HTTP协议本身是明文传输的,因此抓包工具可以直接捕获并解析这些数据。2.HTTPS数据的抓包HTTPS协议在传输过程中是加密的,因此抓包工具需要模拟服务端和客户端
- 论文解读 | 《忍冬桑黄发酵产黄酮类化合物的研究》
桑黄研究员
健康医疗人工智能
出版日期:2022年发表刊物:《中南林业科技大学》论文作者:朱姝枚桑黄(Sanghuangporus)是一种传统的药用真菌,具有显著的免疫增强和抗肿瘤功效。黄酮类化合物作为桑黄中的高含量次生代谢物,主要存在于其菌丝和子实体中,对人体健康具有重要作用。近年来,随着人们对健康的日益关注,利用食用菌作为原料提取黄酮类化合物的研究逐渐成为营养学领域的重要课题。忍冬桑黄(Sanghuangporusloni
- springboot 整合swagger2
兮川
SpringBoot后端springbootswagger2
相信很多人都用过postman,使用postman其实可以很简便的进行接口调试,但是呢,每次还要写url,以及要添加参数名字(很容易写错)。所以啊,swagger2优势就体现出来了,它只需要添加少量注解即可在项目下调试接口,并且可以根据项目是否是测试还是生产环境,可以显示或禁止页面接口调试,介绍就到这里,开始写整合部分。一.maven添加依赖此处使用的是2.7.0版本,下面的ui二选一即可,spr
- 使用Three.js渲染器创建炫酷3D场景
引言在当今数字化的时代,3D图形技术正以其独特的魅力在各个领域掀起波澜。从影视制作到游戏开发,从虚拟现实到网页交互,3D场景以其强烈的视觉冲击力和沉浸式的体验,成为了吸引用户、传达信息的重要手段。而Three.js,作为一款功能强大且广受欢迎的JavaScript3D库,为我们提供了便捷、高效的途径来创建令人炫目的3D场景。本文将深入探讨使用Three.js渲染器创建炫酷3D场景的方方面面,带领读
- BOE(京东方)携手京东发起百吋电视品牌联盟发布会 引领家庭视听正式迈入大屏时代
网络
2025年3月20日,备受瞩目的大型家电与消费电子展AWE博览会(AWE2025)在上海隆重召开,多款由BOE(京东方)ADSPro技术赋能的大屏新品惊艳亮相。适逢电视诞生百年这一重要历史时刻,BOE(京东方)与电商巨头京东于AWE展会现场联合发起2025年百吋电视品牌联盟发布会,共同推动百吋电视普及。这一举措意义非凡,它不仅标志着电视产业新元年的开启,更引领了家庭娱乐新趋势的到来。此次发布以“巨
- 信创国产芯片如何助力企业数字化转型
程序员
企业数字化转型已成为当今时代的关键趋势,在这一进程中,信创国产芯片正发挥着日益重要的作用。随着全球科技竞争的加剧以及对信息安全重视程度的不断提升,信创国产芯片凭借其独特优势,为企业数字化转型提供了坚实的支撑与新的发展机遇。信创国产芯片的发展现状信创产业近年来在我国取得了显著的进步,国产芯片作为其中的核心环节,也迎来了快速发展期。国内众多科研机构和企业加大了在芯片研发领域的投入,不断攻克技术难题。从
- 如何提升 API 性能:来自 Java 和测试开发者的优化建议
你正在听你最喜欢的歌曲,测试你使用编写的新API。但等你听完一整首歌,API还没响应。哎呀!这是一个巨大的警告信号——是时候优化你的API响应时间了。让我们深入了解一些加速方法,让你的API跟你最喜欢的吉他独奏一样快。为什么API响应时间很重要想想看:API响应时间就是你的应用程序与服务器之间的对话速度。它响应得越快,用户就会越开心。API慢=用户沮丧,API快=用户高兴。所以,让我们解决那些延迟
- PLM项目管理软件如何支持供应链管理与协作?
程序员
在企业的运营过程中,供应链管理与协作至关重要,它关乎着企业的成本控制、产品交付速度以及客户满意度等多个关键方面。而PLM项目管理软件作为一种强大的工具,正逐渐在支持供应链管理与协作中发挥着不可忽视的作用。PLM软件涵盖了从产品的概念设计到产品生命周期结束的全过程管理,通过整合各种数据和流程,为供应链各环节的协同工作提供了坚实的基础。接下来,我们将深入探讨PLM项目管理软件是如何支持供应链管理与协作
- html 5中哪个标签用于定义标题列表项,No.5 HTML常用标签
李诗旸
html5中哪个标签用于定义标题列表项
一、标题标签为了使网页更具有语义化,我们经常会在页面中用到标题标签。HTML提供了6个等级的网页标题,即至。我是一级标题我是二级标题我是三级标题我是四级标题我是五级标题我是六级标题单词head的缩写,意为头部、标题。标签语义:作为标题使用,并且依据重要性递减。特点:加了标题的文字会变的加粗,字号也会依次变大。一个标题独占一行。二、段落标签在网页中,要把文字有条理地显示出来,就需要将这些文字分段显示
- Apifox vs Apipost,API 管理工具选型思考,企业究竟该如何选?
在企业级API调试与管理场景中,选择一款高效的工具至关重要。市面上的调试工具琳琅满目,而Apifox和Apipost是近几年两款备受开发者关注的API工具。二者都宣称为团队协作和接口调试赋能,但对企业来说,究竟谁才是更适合的选择呢?本文将从功能对比、用户体验、企业适配度和性价比等多个维度做一次全面解析,帮助你做出更明智的选择。一.概述与定位ApiFoxApifox是一款国产的API调试工具,主打“
- CentOS 7.x 快速搭建ARK服务器
Aorsion
Linuxarkserverarkservercentos方舟服务器搭建Linux方舟开服教程方舟多人联机
本人菜鸟一枚,最近喜欢上了ark,也找到了2个基友,但是在别的服玩的不是很开心(非人民币玩家,你们懂),刚好有台闲置的拯救者14笔记本,i7-4720HQ、16G内存、128G三星970pro,1T机械,索性拿来装个Centos7.6搭个服自己玩,就多点电费的事,下面把自己折腾一天的开服经历做个笔记留给和我一样的童鞋,喜欢开服工具的请绕道友情提醒:ARK需要大量内存,建议使用至少具有6GBRAM以
- Fuzzy Control | Degree of Membership Function
斐夷所非
mathematics隶属度函数
注:本文为“隶属度函数”相关文章合辑。如有内容异常,请看原文。隶属函数(MembershipFunction),又称归属函数或模糊元函数,是用于表征模糊集合的重要数学工具。在经典集合中,元素与集合的关系只有属于或不属于两种明确情况,分别用111和000表示。但对于模糊集合而言,元素与集合的隶属关系具有不分明性。隶属函数正是为描述元素uuu对论域UUU上的一个模糊集合的隶属关系而引入的,它将用区间[
- 密码策略合规性检查仪表盘
闲人编程
python网络服务器异常报警实时监控多因素认证合规性密码策略
目录一、前言二、密码策略合规性背景与意义2.1密码策略的重要性2.2密码策略合规性检查的需求三、系统设计思路与架构3.1数据采集与加解密模块3.2异步任务调度与GPU加速模块3.3密码策略检查算法模块3.4GUI界面模块四、核心数学公式与算法证明4.1AES-GCM加解密公式4.2密码强度评分算法4.3合规性检测算法4.4统计与报告生成五、异步任务调度与GPU加速设计六、GUI界面设计与功能模块七
- QKeras、Brevitas和QONNX量化工具对比
kanhao100
笔记深度学习边缘计算
QKeras、Brevitas和QONNX量化工具对比一、引言在深度学习模型部署领域,量化技术已成为提升模型执行效率的关键手段。通过将浮点权重转换为低精度表示,量化能显著减小模型体积、降低内存占用并加速推理过程。对于资源受限的设备(如移动设备、嵌入式系统和边缘计算设备),量化技术尤为重要。本文深入对比三款主流量化工具:QKeras、Brevitas和QONNX,从用户实际应用角度剖析它们的技术特点
- 自学黑客技术多长时间能达到挖漏洞的水平?
慕烟疏雨
网络安全web安全安全网络运维
抱着一个明确的目的去学习,学习效果能够事半功倍,给你点个赞。但值得注意的一个点是:任何未经授权的挖洞行为,都是违法的!!!任何未经授权的挖洞行为,都是违法的!!!任何未经授权的挖洞行为,都是违法的!!!这一点一定要切记!!!!!!!接下来回归主题,你想挖漏洞做副业这个想法是好的,但有时候理想很丰满,现实很骨干。从提问描述来看,你之前应该没有深入了解过网络安全,为了避免后面说的东西你理解不了,那我就
- 机器学习是怎么一步一步由神经网络发展到今天的Transformer架构的?
yuanpan
机器学习神经网络transformer
机器学习和神经网络的发展经历了一系列重要的架构和技术阶段。以下是更全面的总结,涵盖了从早期神经网络到卷积神经网络之前的架构演变:1.早期神经网络:感知机(Perceptron)时间:1950年代末至1960年代。背景:感知机由FrankRosenblatt提出,是第一个具有学习能力的神经网络模型。它由单层神经元组成,可以用于简单的二分类任务。特点:输入层和输出层之间直接连接,没有隐藏层。使用简单的
- 关于误差平面小记
文弱_书生
乱七八糟平面算法神经网络机器学习
四维曲面的二维切片:误差平面详解在深度学习优化过程中,我们通常研究损失函数(LossFunction)的变化,试图找到权重的最优配置。由于神经网络的参数空间通常是高维的,我们需要使用低维可视化的方法来理解优化过程和误差平面(ErrorSurface)。在这里,我们讨论一个四维曲面的二维切片,其中:三个维度是网络的权重(w1,w2,w3w_1,w_2,w_3w1,w2,w3)。第四个维度是误差(损失
- 关于重投影误差小记
文弱_书生
乱七八糟数码相机算法
重投影误差(ReprojectionError)讲解1.什么是重投影误差?在三维重建或相机标定过程中,我们希望将一个世界坐标系中的三维点投影到相机的图像平面上。理想情况下,该点的投影位置应该与实际图像中的观测点(如特征点)完全匹配,但由于噪声、相机模型的不准确性或优化算法的误差,这两个点可能会有偏差。重投影误差就是这个偏差的度量,即:e=∥pobserved−preprojected∥e=\|p_
- Spring Cloud:微服务架构的利器
Earth explosion
架构springcloud微服务
在当今快速变化的软件开发领域,微服务架构凭借其灵活性、可扩展性和易于维护的特点,成为了众多企业构建大型应用系统的首选方案。而SpringCloud,作为Spring生态系统中的一部分,为开发者提供了一整套用于构建微服务架构的工具集,极大地简化了微服务应用的开发、部署和管理过程。本文将深入介绍SpringCloud的核心概念、关键技术及其在实际项目中的应用。一、SpringCloud简介Spring
- 旋转位置编码(Rotary Positional Encoding, RoPE):中文公式详解与代码实现
RockLiu@805
深度学习模块人工智能自然语言处理语言模型深度学习
旋转位置编码(RotaryPositionalEncoding,RoPE):中文公式详解与代码实现在序列模型中,位置信息对于任务的理解至关重要。传统的绝对和相对位置编码各有优缺点,而RoPE作为一种创新的位置编码方法,展现了其独特的优势。RoPE的核心思想RoPE通过旋转机制动态地捕捉位置信息。它允许查询(query)和键(key)向量的旋转程度根据它们之间的相对或绝对位置自动调整。这种方法使模型
- 常见经典目标检测算法
109702008
人工智能#深度学习目标检测人工智能
ChatGPT目标检测(ObjectDetection)是计算机视觉领域的一个重要分支,其目的是识别数字图像中的不同对象,并给出它们的位置和类别。近年来,许多经典的目标检测算法被提出并广泛应用。以下是一些常见的经典目标检测算法:1.R-CNN(RegionswithCNNfeatures):R-CNN通过使用区域提议方法(如选择性搜索)首先生成潜在的边界框,然后使用卷积神经网络(CNN)提取特征,
- 关于神经网络中的正则化
文弱_书生
乱七八糟神经网络人工智能深度学习
神经网络训练中的正则化正则化(Regularization)是神经网络训练中的一个关键技术,主要用于防止模型过拟合(overfitting),提高泛化能力。1.为什么需要正则化?在神经网络训练过程中,模型的目标是找到能在训练数据上表现良好的参数,同时也能泛化到未见过的数据。如果一个模型过于复杂(如参数过多、层数过深),它可能会记住训练数据中的噪声,而不是学习数据的本质模式。这种情况称为过拟合(ov
- 大学期间如何学习利用AI
der丸子吱吱吱
学习人工智能
一、引言人工智能(AI)是当今世界技术发展的重要方向,它已经渗透到医疗、金融、交通、娱乐等各个领域。随着AI技术的快速发展,它不仅改变了我们的生活,也带来了巨大的职业机会。然而,面对如此广阔的领域,作为大学生,如何在本科阶段有效地学习和利用AI,成了许多同学的困惑。本文将详细介绍大学生在本科阶段如何通过合理的学习路线、方法和工具,逐步掌握AI的核心技术,并为日后进入AI行业打下坚实的基础。通过这篇
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理