Central Cache也是一个哈希桶结构,但是它的映射关系和之前两次有所不同,Page Cache的映射关系和span的页数有关一页span(8K)所以,Page Cache最多有128页的span。
如果central cache释放回一个span,则依次寻找span的前后page id的没有在使用的空闲span,看是否可以合并,如果合并继续向前寻找。这样就可以将切小的内存合并收缩成大的span,减少内存碎片。
这里就先不实现之后再实现。
Page Cache和Central Cache一样全局只能有一个对象,所以我们要把Page Cache对象设计出单例模式里面的懒汉模式
#pragma once
#include "Common.h"
//单例模式
class PageCache
{
public:
std::mutex _pageMtx;
private:
SpanList _spanLists[NPAGES];
PageCache()//设为私有,防止构造新的对象
{}
PageCache(const PageCache&) = delete;//防止外面拷贝构造新对象
static PageCache _sInst;//设成static全局变量,保证所有线程可见
};
SpanList _spanLists[NPAGES]
:哈希桶结构,每个位置对应相应页数的span。
NPAGES
:为129所以数组有129个位置,但是0位置不挂任何东西,因为没有0页的span
NPAGES设为129是为了方便我们映射,1page就银蛇在下标为1处,我们不用-0处理,当然我们也可以只建128个也没问题。
std::mutex _pageMtx
:用成全局锁,因为如果用桶锁有些情况下桶锁不住得用全局锁才可以。
#pragma once
#include "Common.h"
class PageCache
{
public:
//获取全局唯一的page cache对象
static PageCache* GetInstance()
{}
// 获取k也span
Span* NewSpan(size_t k);
std::mutex _pageMtx;
private:
SpanList _spanLists[NPAGES];
PageCache()
{}
PageCache(const PageCache&) = delete;
static PageCache _sInst;
};
GetInstance()
:获取全局唯一的Page Cache对象
NewSpan()
:获取k页的span
static PageCache* GetInstance()
{
//把全局唯一的对象传引用给外界
return &_sInst;
}
//这里用static的原因和之前Central Cache层一样
在实现 NewSpan()执勤我们要先实现Central Cache的GetOneSpan(),之前因为GetOneSpan()的实现逻辑和Page Cache层相关,所以就没有实现。现在已经知道Page Cache层的结构就可以实现了。
GetOneSpan()因为是外面是直接传入SpanList对象,所以我们只要判断该SpanList上还有没有未分配的SpanList即可。
有,则直接返回一个span对象
没有,则向Page Cache层索要一个Span对象
// 获取一个非空的span
Span* CentralCache::GetOneSpan(SpanList& list, size_t size)
{
// 查看当前的spanlist中是否有还有未分配对象的span
//因为要遍历spanlist,所以我们要提供span的头节点,和为节点,方便遍历。
//补充点1:补充Begin()和End()的实现
Span* it = list.Begin();
while (it != list.End())
{
if (it->_freeList != nullptr)
{
return it;
}
else
{
it = it->_next;
}
}
// 先把central cache的桶锁解掉,这样如果其他线程释放内存对象回来,不会阻塞
list._mtx.unlock();
// 走到这里说没有空闲span了,只能找page cache要
PageCache::GetInstance()->_pageMtx.lock();
Span* span = PageCache::GetInstance()->NewSpan(SizeClass::NumMovePage(size));
PageCache::GetInstance()->_pageMtx.unlock();
// 对获取span进行切分,不需要加锁,因为这会其他线程访问不到这个span
// 计算span的大块内存的起始地址和大块内存的大小(字节数)
char* start = (char*)(span->_pageId << PAGE_SHIFT);
size_t bytes = span->_n << PAGE_SHIFT;
char* end = start + bytes;
// 把大块内存切成自由链表链接起来
// 1、先切一块下来去做头,方便尾插
//补充点2:切span的过程
span->_freeList = start;
start += size;
void* tail = span->_freeList;
int i = 1;
while (start < end)
{
++i;
NextObj(tail) = start;
tail = NextObj(tail); // tail = start;
start += size;
}
NextObj(tail) = nullptr;
// 切好span以后,需要把span挂到桶里面去的时候,再加锁
list._mtx.lock();
//补充点3:PushFront(span)的实现
list.PushFront(span);
return span;
}
// 带头双向循环链表
// 展示部分SpanList
class SpanList
{
public:
Span* Begin()
{
return _head->_next;
}
Span* End()
{
return _head;
}
private:
Span* _head;
public:
std::mutex _mtx; // 桶锁
};
补充点2:切span的过程
切span的代码
span->_freeList = start;
start += size;//size是一个对象的大小
void* tail = span->_freeList;
int i = 1;
while (start < end)
{
++i;
NextObj(tail) = start;
tail = NextObj(tail); // tail = start;
start += size;
}
NextObj(tail) = nullptr;
切span的过程
开始切
start先向后走,走到下一个对象的起始地址
开始链接:end的前几个字节存储start指向的下一个对象的首地址
end向后走,start也向后走
再开始链接
之后就这样一步一步的链接到最后。
这里的end就是上面的tail,改麻烦就没改。
到最后tail要置空,防止越界访问。
补充点3:PushFront()的实现
PushFront()过程图
PushFront()的实现
复用了Insert。
// 带头双向循环链表
// 展示部分SpanList
class SpanList
{
public:
Span* Begin()
{
return _head->_next;
}
void PushFront(Span* span)
{
Insert(Begin(), span);
}
void Insert(Span* pos, Span* newSpan)
{
assert(pos);
assert(newSpan);
Span* prev = pos->_prev;
// prev newspan pos
prev->_next = newSpan;
newSpan->_prev = prev;
newSpan->_next = pos;
pos->_prev = newSpan;
}
private:
Span* _head;
public:
std::mutex _mtx; // 桶锁
};
// 获取一个K页的span
Span* PageCache::NewSpan(size_t k)
{
assert(k > 0 && k < NPAGES);
// 先检查第k个桶里面有没有span
//补充点1:PopFront()的实现
if (!_spanLists[k].Empty())
{
//有则返回k页span对象
return _spanLists[k]->PopFront();
}
// 检查一下后面的桶里面有没有span,如果有可以把他它进行切分
//补充点2:切分span的逻辑
for (size_t i = k+1; i < NPAGES; ++i)
{
if (!_spanLists[i].Empty())
{
Span* nSpan = _spanLists[i].PopFront();
Span* kSpan = new Span;
// 在nSpan的头部切一个k页下来
// k页span返回
// nSpan再挂到对应映射的位置
kSpan->_pageId = nSpan->_pageId;
kSpan->_n = k;
nSpan->_pageId += k;
nSpan->_n -= k;
_spanLists[nSpan->_n].PushFront(nSpan);
return kSpan;
}
}
// 走到这个位置就说明后面没有大页的span了
// 这时就去找堆要一个128页的span
Span* bigSpan = new Span;
void* ptr = SystemAlloc(NPAGES - 1);
bigSpan->_pageId = (PAGE_ID)ptr >> PAGE_SHIFT;
bigSpan->_n = NPAGES - 1;
_spanLists[bigSpan->_n].PushFront(bigSpan);
//递归调用NewSpan
return NewSpan(k);
}
补充点1:PopFront()的实现
PopFront():过程图
PopFront()的实现
复用Erase。
// 带头双向循环链表
class SpanList
{
public:
Span* PopFront()
{
Span* front = _head->_next;
Erase(front);
return front;
}
void Erase(Span* pos)
{
assert(pos);
assert(pos != _head);
Span* prev = pos->_prev;
Span* next = pos->_next;
prev->_next = next;
next->_prev = prev;
}
private:
Span* _head;
public:
std::mutex _mtx; // 桶锁
};
补充点2:切分span的逻辑
比如Central Cache向Page Cache要一个2页的span,但是2页的span出正好没有。
而后面有一个128页的span就可以切分成2页和126页的span
之后2页的span给Central Cache层,126页的span挂在126桶下
然后一直这样切分直到满足不了Central Cache层的需求Page Cache就向系统再申请一个128页的page。
#pragma once
#include
#include
#include
#include
#include
#include
#include
using std::cout;
using std::endl;
#ifdef _WIN32
#include
#else
// ...
#endif
static const size_t MAX_BYTES = 256 * 1024;
static const size_t NFREELIST = 208;
static const size_t NPAGES = 129;
static const size_t PAGE_SHIFT = 13;
#ifdef _WIN64
typedef unsigned long long PAGE_ID;
#elif _WIN32
typedef size_t PAGE_ID;
#else
// linux
#endif
// 直接去堆上按页申请空间
inline static void* SystemAlloc(size_t kpage)
{
#ifdef _WIN32
void* ptr = VirtualAlloc(0, kpage << 13, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
#else
// linux下brk mmap等
#endif
if (ptr == nullptr)
throw std::bad_alloc();
return ptr;
}
static void*& NextObj(void* obj)
{
return *(void**)obj;
}
// 管理切分好的小对象的自由链表
class FreeList
{
public:
void Push(void* obj)
{
assert(obj);
// 头插
//*(void**)obj = _freeList;
NextObj(obj) = _freeList;
_freeList = obj;
}
void PushRange(void* start, void* end)
{
NextObj(end) = _freeList;
_freeList = start;
}
void* Pop()
{
assert(_freeList);
// 头删
void* obj = _freeList;
_freeList = NextObj(obj);
return obj;
}
bool Empty()
{
return _freeList == nullptr;
}
size_t& MaxSize()
{
return _maxSize;
}
private:
void* _freeList = nullptr;
size_t _maxSize = 1;
};
// 计算对象大小的对齐映射规则
class SizeClass
{
public:
// 整体控制在最多10%左右的内碎片浪费
// [1,128] 8byte对齐 freelist[0,16)
// [128+1,1024] 16byte对齐 freelist[16,72)
// [1024+1,8*1024] 128byte对齐 freelist[72,128)
// [8*1024+1,64*1024] 1024byte对齐 freelist[128,184)
// [64*1024+1,256*1024] 8*1024byte对齐 freelist[184,208)
static inline size_t _RoundUp(size_t bytes, size_t alignNum)
{
return ((bytes + alignNum - 1) & ~(alignNum - 1));
}
static inline size_t RoundUp(size_t size)
{
if (size <= 128)
{
return _RoundUp(size, 8);
}
else if (size <= 1024)
{
return _RoundUp(size, 16);
}
else if (size <= 8*1024)
{
return _RoundUp(size, 128);
}
else if (size <= 64*1024)
{
return _RoundUp(size, 1024);
}
else if (size <= 256 * 1024)
{
return _RoundUp(size, 8*1024);
}
else
{
assert(false);
return -1;
}
}
static inline size_t _Index(size_t bytes, size_t align_shift)
{
return ((bytes + (1 << align_shift) - 1) >> align_shift) - 1;
}
// 计算映射的哪一个自由链表桶
static inline size_t Index(size_t bytes)
{
assert(bytes <= MAX_BYTES);
// 每个区间有多少个链
static int group_array[4] = { 16, 56, 56, 56 };
if (bytes <= 128){
return _Index(bytes, 3);
}
else if (bytes <= 1024){
return _Index(bytes - 128, 4) + group_array[0];
}
else if (bytes <= 8 * 1024){
return _Index(bytes - 1024, 7) + group_array[1] + group_array[0];
}
else if (bytes <= 64 * 1024){
return _Index(bytes - 8 * 1024, 10) + group_array[2] + group_array[1] + group_array[0];
}
else if (bytes <= 256 * 1024){
return _Index(bytes - 64 * 1024, 13) + group_array[3] + group_array[2] + group_array[1] + group_array[0];
}
else{
assert(false);
}
return -1;
}
// 一次thread cache从中心缓存获取多少个
static size_t NumMoveSize(size_t size)
{
assert(size > 0);
// [2, 512],一次批量移动多少个对象的(慢启动)上限值
// 小对象一次批量上限高
// 小对象一次批量上限低
int num = MAX_BYTES / size;
if (num < 2)
num = 2;
if (num > 512)
num = 512;
return num;
}
// 计算一次向系统获取几个页
static size_t NumMovePage(size_t size)
{
size_t num = NumMoveSize(size);
size_t npage = num*size;
npage >>= PAGE_SHIFT;
if (npage == 0)
npage = 1;
return npage;
}
};
// 管理多个连续页大块内存跨度结构
struct Span
{
PAGE_ID _pageId = 0; // 大块内存起始页的页号
size_t _n = 0; // 页的数量
Span* _next = nullptr; // 双向链表的结构
Span* _prev = nullptr;
size_t _useCount = 0; // 切好小块内存,被分配给thread cache的计数
void* _freeList = nullptr; // 切好的小块内存的自由链表
};
// 带头双向循环链表
class SpanList
{
public:
SpanList()
{
_head = new Span;
_head->_next = _head;
_head->_prev = _head;
}
Span* Begin()
{
return _head->_next;
}
Span* End()
{
return _head;
}
bool Empty()
{
return _head->_next == _head;
}
void PushFront(Span* span)
{
Insert(Begin(), span);
}
Span* PopFront()
{
Span* front = _head->_next;
Erase(front);
return front;
}
void Insert(Span* pos, Span* newSpan)
{
assert(pos);
assert(newSpan);
Span* prev = pos->_prev;
// prev newspan pos
prev->_next = newSpan;
newSpan->_prev = prev;
newSpan->_next = pos;
pos->_prev = newSpan;
}
void Erase(Span* pos)
{
assert(pos);
assert(pos != _head);
Span* prev = pos->_prev;
Span* next = pos->_next;
prev->_next = next;
next->_prev = prev;
}
private:
Span* _head;
public:
std::mutex _mtx; // 桶锁
};
#pragma once
#include "Common.h"
class ThreadCache
{
public:
// 申请和释放内存对象
void* Allocate(size_t size);
void Deallocate(void* ptr, size_t size);
// 从中心缓存获取对象
void* FetchFromCentralCache(size_t index, size_t size);
private:
FreeList _freeLists[NFREELIST];
};
// TLS thread local storage
static _declspec(thread) ThreadCache* pTLSThreadCache = nullptr;
#include "ThreadCache.h"
#include "CentralCache.h"
void* ThreadCache::FetchFromCentralCache(size_t index, size_t size)
{
// 慢开始反馈调节算法
// 1、最开始不会一次向central cache一次批量要太多,因为要太多了可能用不完
// 2、如果你不要这个size大小内存需求,那么batchNum就会不断增长,直到上限
// 3、size越大,一次向central cache要的batchNum就越小
// 4、size越小,一次向central cache要的batchNum就越大
size_t batchNum = min(_freeLists[index].MaxSize(), SizeClass::NumMoveSize(size));
if (_freeLists[index].MaxSize() == batchNum)
{
_freeLists[index].MaxSize() += 1;
}
void* start = nullptr;
void* end = nullptr;
size_t actualNum = CentralCache::GetInstance()->FetchRangeObj(start, end, batchNum, size);
assert(actualNum > 0);
if (actualNum == 1)
{
assert(start == end);
return start;
}
else
{
_freeLists[index].PushRange(NextObj(start), end);
return start;
}
}
void* ThreadCache::Allocate(size_t size)
{
assert(size <= MAX_BYTES);
size_t alignSize = SizeClass::RoundUp(size);
size_t index = SizeClass::Index(size);
if (!_freeLists[index].Empty())
{
return _freeLists[index].Pop();
}
else
{
return FetchFromCentralCache(index, alignSize);
}
}
void ThreadCache::Deallocate(void* ptr, size_t size)
{
assert(ptr);
assert(size <= MAX_BYTES);
// 找对映射的自由链表桶,对象插入进入
size_t index = SizeClass::Index(size);
_freeLists[index].Push(ptr);
// ...
}
#pragma once
#include "Common.h"
#include "ThreadCache.h"
static void* ConcurrentAlloc(size_t size)
{
// 通过TLS 每个线程无锁的获取自己的专属的ThreadCache对象
if (pTLSThreadCache == nullptr)
{
pTLSThreadCache = new ThreadCache;
}
cout << std::this_thread::get_id() << ":"<<pTLSThreadCache<<endl;
return pTLSThreadCache->Allocate(size);
}
static void ConcurrentFree(void* ptr, size_t size)
{
assert(pTLSThreadCache);
pTLSThreadCache->Deallocate(ptr, size);
}
#pragma once
#include "Common.h"
// 单例模式
class CentralCache
{
public:
static CentralCache* GetInstance()
{
return &_sInst;
}
// 获取一个非空的span
Span* GetOneSpan(SpanList& list, size_t byte_size);
// 从中心缓存获取一定数量的对象给thread cache
size_t FetchRangeObj(void*& start, void*& end, size_t batchNum, size_t size);
private:
SpanList _spanLists[NFREELIST];
private:
CentralCache()
{}
CentralCache(const CentralCache&) = delete;
static CentralCache _sInst;
};
#include "CentralCache.h"
#include "PageCache.h"
CentralCache CentralCache::_sInst;
// 获取一个非空的span
Span* CentralCache::GetOneSpan(SpanList& list, size_t size)
{
// 查看当前的spanlist中是否有还有未分配对象的span
Span* it = list.Begin();
while (it != list.End())
{
if (it->_freeList != nullptr)
{
return it;
}
else
{
it = it->_next;
}
}
// 先把central cache的桶锁解掉,这样如果其他线程释放内存对象回来,不会阻塞
list._mtx.unlock();
// 走到这里说没有空闲span了,只能找page cache要
PageCache::GetInstance()->_pageMtx.lock();
Span* span = PageCache::GetInstance()->NewSpan(SizeClass::NumMovePage(size));
PageCache::GetInstance()->_pageMtx.unlock();
// 对获取span进行切分,不需要加锁,因为这会其他线程访问不到这个span
// 计算span的大块内存的起始地址和大块内存的大小(字节数)
char* start = (char*)(span->_pageId << PAGE_SHIFT);
size_t bytes = span->_n << PAGE_SHIFT;
char* end = start + bytes;
// 把大块内存切成自由链表链接起来
// 1、先切一块下来去做头,方便尾插
span->_freeList = start;
start += size;
void* tail = span->_freeList;
int i = 1;
while (start < end)
{
++i;
NextObj(tail) = start;
tail = NextObj(tail); // tail = start;
start += size;
}
NextObj(tail) = nullptr;
// 切好span以后,需要把span挂到桶里面去的时候,再加锁
list._mtx.lock();
list.PushFront(span);
return span;
}
// 从中心缓存获取一定数量的对象给thread cache
size_t CentralCache::FetchRangeObj(void*& start, void*& end, size_t batchNum, size_t size)
{
size_t index = SizeClass::Index(size);
_spanLists[index]._mtx.lock();
Span* span = GetOneSpan(_spanLists[index], size);
assert(span);
assert(span->_freeList);
// 从span中获取batchNum个对象
// 如果不够batchNum个,有多少拿多少
start = span->_freeList;
end = start;
size_t i = 0;
size_t actualNum = 1;
while ( i < batchNum - 1 && NextObj(end) != nullptr)
{
end = NextObj(end);
++i;
++actualNum;
}
span->_freeList = NextObj(end);
NextObj(end) = nullptr;
span->_useCount += actualNum;
_spanLists[index]._mtx.unlock();
return actualNum;
}
#pragma once
#include "Common.h"
class PageCache
{
public:
static PageCache* GetInstance()
{
return &_sInst;
}
// ȡһKҳspan
Span* NewSpan(size_t k);
std::mutex _pageMtx;
private:
SpanList _spanLists[NPAGES];
PageCache()
{}
PageCache(const PageCache&) = delete;
static PageCache _sInst;
};
#include "PageCache.h"
PageCache PageCache::_sInst;
// 获取一个K页的span
Span* PageCache::NewSpan(size_t k)
{
assert(k > 0 && k < NPAGES);
// 先检查第k个桶里面有没有span
if (!_spanLists[k].Empty())
{
return _spanLists[k]->PopFront();
}
// 检查一下后面的桶里面有没有span,如果有可以把他它进行切分
for (size_t i = k+1; i < NPAGES; ++i)
{
if (!_spanLists[i].Empty())
{
Span* nSpan = _spanLists[i].PopFront();
Span* kSpan = new Span;
// 在nSpan的头部切一个k页下来
// k页span返回
// nSpan再挂到对应映射的位置
kSpan->_pageId = nSpan->_pageId;
kSpan->_n = k;
nSpan->_pageId += k;
nSpan->_n -= k;
_spanLists[nSpan->_n].PushFront(nSpan);
return kSpan;
}
}
// 走到这个位置就说明后面没有大页的span了
// 这时就去找堆要一个128页的span
Span* bigSpan = new Span;
void* ptr = SystemAlloc(NPAGES - 1);
bigSpan->_pageId = (PAGE_ID)ptr >> PAGE_SHIFT;
bigSpan->_n = NPAGES - 1;
_spanLists[bigSpan->_n].PushFront(bigSpan);
return NewSpan(k);
}