- 深入解析深度学习中的过拟合与欠拟合诊断、解决与工程实践
古月居GYH
深度学习人工智能
一、引言:模型泛化能力的核心挑战在深度学习模型开发中,欠拟合与过拟合是影响泛化能力的两个核心矛盾。据GoogleBrain研究统计,工业级深度学习项目中有63%的失败案例与这两个问题直接相关。本文将从基础概念到工程实践,系统解析其本质特征、诊断方法及解决方案,并辅以可复现的代码案例。二、核心概念与通熟易懂解释简单而言,欠拟合是指模型不能在训练集上获得足够低的误差。换句换说,就是模型复杂度低,模型在
- 法律行业——合同审查与AI律师
zhouyaowei1983
人工智能人工智能
一、引言:AI技术重构法律行业新格局随着AI技术从实验室走向规模化应用,法律行业正经历从“经验驱动”向“数据驱动”的范式转变。这一变革的核心驱动力源于法律服务的两大根本矛盾:传统人工服务效率瓶颈与市场对高精度、低成本法律产品的迫切需求。1.法律行业数字化转型的底层逻辑技术革命推手:以DeepSeekR1大模型为代表的开源AI技术,让法律文本解析、案例推理等复杂任务实现平民化应用
- 知识蒸馏:让大模型“瘦身“而不失智慧的魔术
一休哥助手
人工智能人工智能
引言:当AI模型需要"减肥"在人工智能领域,一个有趣的悖论正在上演:大模型的参数规模每年以10倍速度增长,而移动设备的算力却始终受限。GPT-4的1750亿参数需要价值500万美元的GPU集群运行,但现实中的智能设备可能只有指甲盖大小。这种矛盾催生了一项神奇的技术——知识蒸馏(KnowledgeDistillation),它就像给AI模型进行"脑外科手术",将庞然大物的智慧浓缩到轻量模型中。第一章
- 耦合与解耦:软件工程中的核心矛盾与破局之道
以恒1
软件工程
耦合与解耦:软件工程中的核心矛盾与破局之道在软件开发领域,耦合与解耦是贯穿始终的核心矛盾。它们如同硬币的两面,既相互对立又紧密依存。本文将从概念解析、类型分类、解耦策略到实际应用,全面剖析这对矛盾体的本质与破局之道。一、耦合的本质:依赖关系的多维透视耦合(Coupling)指软件系统中不同模块、组件或服务之间的相互依赖程度。这种依赖可能表现为数据传递、控制流交互或资源共享。根据耦合强度,可分为七种
- 端到端数字人生产线:如何实现日均3000条视频的工业级输
井云AI
人工智能
端到端数字人生产线:基于DAG引擎如何实现日均3000条视频的工业级输出?一、行业困局:短视频生产的效率魔咒2025年《内容科技白皮书》数据显示:83%企业因人工剪辑效率低下错失流量红利(MCN机构月损500万+)6小时/条传统视频从脚本到成片的平均耗时(行业调研)15%误判率人工审核导致优质内容被误杀(教育品牌实测)这些数字背后,是内容生产领域的三重矛盾:质量、效率与合规的不可兼得。二、技术破局
- 联邦学习算法安全优化与可解释性研究
智能计算研究中心
其他
内容概要本研究围绕联邦学习算法的安全性优化与模型可解释性增强展开系统性探索。首先,针对联邦学习中数据隐私泄露与模型性能损耗的固有矛盾,提出一种融合差分隐私与动态权重聚合的协同优化框架,通过分层加密机制降低敏感信息暴露风险。其次,引入可解释性算法(如LIME与SHAP)构建透明化决策路径,结合注意力机制实现特征贡献度的可视化映射,有效提升模型在医疗影像异常检测与金融欺诈识别场景中的可信度。此外,研究
- 客户总是提出不合理的需求,如何破局?
在项目管理中,“客户提出不合理需求”是项目经理最常遇到的挑战之一。这些需求可能超出合同范围、违背技术可行性、突破预算或时间限制,甚至逻辑上自相矛盾。但真正的困境往往不在于需求本身是否合理,而在于如何平衡客户期望与项目边界,将对抗转化为合作。本文将从需求本质剖析、结构化应对策略到高阶破局思维,提供一套系统化的解决方案。一、需求“不合理”的本质诊断表象与根源的错位冰山模型:客户表面需求(如“界面要更酷
- 【万字总结】前端全方位性能优化指南(四)——虚拟DOM批处理、文档碎片池、重排规避
庸俗今天不摸鱼
Web性能优化合集前端性能优化
前言在浏览器宇宙中,DOM操作如同「时空裂缝」——一次不当的节点更新可能引发连锁重排,吞噬整条渲染流水线的性能。本章直面这一核心矛盾,以原子级操作合并、节点记忆重组、排版禁忌破解为三重武器,重构DOM更新的物理法则。通过虚拟DOM的批处理引擎将千次操作坍缩为单次提交,借助文档碎片池实现90%节点的跨时空复用,再以transform替代top等20项反重排铁律,我们将彻底终结「JavaScript线
- 在嵌入式系统中实现低功耗MQTT协议:从协议解析到硬件优化
W说编程
物联网嵌入式网络编程物联网网络协议c语言嵌入式硬件
在嵌入式系统中实现低功耗MQTT协议:从协议解析到硬件优化1.引言:物联网时代的低功耗挑战随着物联网设备的爆炸式增长,设备续航与网络可靠性成为嵌入式系统设计的核心矛盾。据统计,70%的物联网设备因功耗问题导致维护成本倍增。核心需求:在维持TCP/IP协议栈功能的前提下,将设备待机功耗降至μA级;确保弱网环境(如2G/NB-IoT)下的数据传输可靠性。本文将以MQTT协议为例,详解在STM32+LW
- 以量子“自相干—波函数”理论的破产奠基唯物唯一的《自然集合论》
留下一片云
科技
违背守恒定律-物质唯一性的“自相干即可改变衍射方向”思想实验:在接受屏光栅“电子落点处”继续开缝衍射。多级重复角度叠加后,按量子“波函数”理论,“电子只靠自相干,不需任何外部作用即可任意变向、返回”,“拔着自己的头发离开了地球”。唯心的经典骗术:“天机不可泄露”—“观察导致坍缩”。—————————自然集合论自然是融洽无矛盾的客观存在,唯物唯一。集合有统属,万物归自然。集合内性本善,逻辑/规则在集
- Websoft9 开源软件实操平台:快速积累企业级软件技能,深入理解真实业务场景
开源创业
引言:打破“纸上谈兵”的实训困境当前高校技术教育普遍面临一个矛盾:学生对开源工具的理论知识掌握充分,但在真实业务场景中常因环境配置复杂、工具链割裂而难以落地。例如,部署一套完整的电商系统需协调数据库、服务器、安全策略等多环节,传统虚拟机环境难以模拟企业级复杂度。Websoft9作为开源软件自动化部署工具,通过预集成200+企业级应用模板(如GitLab、Odoo、Jenkins)和全流程管理能力,
- 云原生架构设计理论与实践(14)
系统架构
1.云原生背景业务快速发展与开发、运维、运营之间落后的生产关系与生产力的矛盾企业内部各占山头与企业总体战略规划的矛盾企业内部改革,降本增效的需求企业实现数字孪生,数字资产的必然需求企业外部环境,如人工智能发展、安全合规等大环境的要求2.云原生架构的设计原则服务化原则(拆分为微服务、小服务,非功能特性委托)弹性原则(可伸可缩)可观测原则(基于sla,slo,在log,trace,metric三个维度
- 【数学建模】一致矩阵的应用及其在层次分析法(AHP)中的性质
烟锁池塘柳0
数学建模数学建模
一致矩阵在层次分析法(AHP)中的应用与性质在层次分析法(AHP)中,一致矩阵是判断矩阵的一种理想状态,它反映了决策者判断的完全合理性和一致性,也就是为了避免决策者认为“A比B重要,B比C重要,但是C又比A重要”的矛盾。本文将详细介绍一致矩阵的定义、性质及其在AHP中的重要意义。关于层次分析法(AHP)的介绍,可以参考:【数学建模】层次分析法(AHP)详解及其应用。一、一致矩阵的定义定义:设A=[
- YOLO11改进-模块-引入CMUNeXt Block 增强全局信息
一勺汤
YOLOv11模型改进系列网络YOLO目标检测模块魔改YOLOv11YOLOV11模型改进
在医学图像分割领域面临诸多问题,如U形架构卷积网络难以提取全局信息,混合架构因计算资源受限在实际医疗场景应用受阻,轻量化网络在保证性能与提取全局信息上存在矛盾。因此,设计了CMUNeXtBlock,CMUNeXtBlock采用大核深度可分离卷积替代普通卷积来提取全局信息,凭借深度可分离卷积减少参数和计算成本以维持轻量化,同时综合利用卷积归纳偏置和全局信息提取能力,有效解决了这些问题。代码:http
- 外呼系统破局电话管控:AI电销机器人合规运营实战指南
ai_vx_3307623172
WX_3307623172AI机器人外呼中心人工智能机器人云计算语音识别服务器开源软件
随着运营商对电话卡管控日趋严格,某金融科技公司曾因单日外呼超限导致80%号码被封——这一案例暴露出AI电销机器人在效率与合规间的矛盾。但数据显示,采用合规策略的企业外呼接通率仍能保持38%以上,关键在于建立适配监管环境的智能外呼体系。一、破解封号困局的三大核心策略1.运营商白名单通道接入三大运营商均开放企业智能外呼专线,这类线路具备免封号特性。某教育机构接入电信AI-PaaS平台后,日均外呼量稳定
- 深入理解 GPU 渲染加速与合成层(Composite Layers)
一、前端视角下的GPU加速1.CPU与GPU的协作模式在前端渲染流程中,GPU加速通过硬件并行计算能力显著提升图形处理效率。传统浏览器渲染依赖CPU处理DOM解析、样式计算和布局,但CPU的串行处理模式在处理大规模图形数据(如复杂动画、3D变换、高清图像)时易成为性能瓶颈。GPU的介入解决了这一核心矛盾:流处理器核心并行计算:GPU拥有数千个小型核心,可同时处理大量像素数据,例如同时对元素的所有像
- 马斯克说的没错,DeepSeek确实厉害,但真正可怕的是...
PPT百科
人工智能powerpointpptDeepSeek马斯克
作者:PPT百科(PPTwiki.COM)发布日期:2025年2月25日“中国能做出DeepSeek这样的AI,我一点都不意外。”当马斯克在达沃斯论坛上说出这句话时,全球科技圈的目光再次聚焦到了这个中国AI独角兽身上。然而,这位“硅谷钢铁侠”的下一句话却耐人寻味:“但它还不是革命性的,我们的Grok3会更好。”马斯克的评价看似矛盾,实则揭示了AI竞争的核心逻辑——技术突破与市场落地的双重博弈。而D
- 【架构思维基础:如何科学定义问题】
调皮的芋头
架构阿里云云计算大数据
架构思维基础:如何科学定义问题一、问题本质认知1.1问题=矛盾根据毛泽东《矛盾论》,问题本质是系统内部要素间既对立又统一的关系。例如:电商系统矛盾演变:90年代:商品供给不足vs消费需求增长00年代:商品丰富但信息匹配低效10年代:商品数量充足但质量需求升级1.2问题三维度publicclassProblem{//核心矛盾主体(如用户需求)privateCoreConflictmainConfli
- AI战略家:AI驱动的政府治理现代化:重构问题识别、决策与监督的范式
SZ0771
人工智能
一、政府公共管理的核心痛点与治理逻辑重构现代政府治理的核心矛盾源于“问题识别-资源匹配-监督反馈”链条的断裂,需从机制设计层面突破传统治理范式。1.问题识别:从被动响应到系统治理被动响应陷阱:依赖12345热线、舆情事件等事后渠道,难以捕捉跨领域系统性问题。例如老旧小区改造反复返工,折射出城市规划法规滞后、财政分配僵化与部门权责模糊的叠加效应。数据割裂困境:300余个垂直政务系统形成数据孤岛,某市
- android系统架构的前世今生,事件分发机制面试题
code高级开源
Android经验分享面试
前言一位网友在职场论坛上发了一个帖子,他说自己今年三十七岁了,是一名Android老兵,因为和上家公司的领导闹矛盾有了嫌隙,一气之下就裸辞了,如今已经辞职四个月了,也失业了四个月。每天都在努力投简历,共投出去了五百封简历,但只有三家通知自己过去面试,其他的都石沉大海。自己很纳闷,就找了一个做猎头的朋友询问,朋友说自己已经超龄了,没有什么岗位可以给自己这个年龄的人了,只有少数的能放宽到四十岁,但也不
- 在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?
玩人工智能的辣条哥
人工智能人工智能LoRA微调
环境:LoRA微调问题描述:在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?解决方案:在LoRA(Low-RankAdaptation)微调大模型后,提升和优化推理效果可以从以下多维度策略入手,涵盖数据、模型架构、训练策略和后处理技术等方面:1.数据优化数据质量与多样性确保微调数据覆盖目标场景的多样性,避免分布偏差。加入领域相关的高质量数据,清洗噪声数据(如重复、矛盾样本)。
- 深度学习赋能中文情感分析:让机器读懂中国人的喜怒哀乐
芯作者
DD:日记深度学习机器学习人工智能
当你在深夜刷到一条"这奶茶真是绝绝子"的朋友圈,AI如何判断这是真心赞美还是阴阳怪气?当电商评论区出现"手机壳颜色很高级,就是物流太佛系",算法怎样量化其中的情感矛盾?在表情包与网络黑话齐飞的数字时代,中文情感分析技术正经历一场由深度学习驱动的认知革命。本文将深度解析这场让机器理解东方语境下复杂情感的科技进化史。一、中文情感分析:世界上最难破译的"情绪密码"1.中文的语义迷宫一词多义:"这操作66
- 跨领域算法安全优化与可解释实践
智能计算研究中心
其他
内容概要作为系统性研究框架,《跨领域算法安全优化与可解释实践》从算法研发的全生命周期切入,重点解决多领域交叉应用中的核心矛盾。通过整合联邦学习的分布式架构与量子计算的高效特性,构建兼顾隐私保护与运算效率的算法优化范式,同时引入动态可解释性分析技术,为医疗影像诊断、金融风险预测等高敏感场景提供决策透明度保障。在技术路径层面,研究聚焦特征工程的鲁棒性设计、超参数的自适应调优策略,以及生成对抗网络在数据
- 《几何原本》命题I.27
AllenAC
《几何原本》学习笔记
《几何原本》命题I.27内错角相等,两直线平行。设∠AEF=∠EFD,AB∦CD\angleAEF=\angleEFD,AB\nparallelCD∠AEF=∠EFD,AB∦CD,交CDCDCD于GGG则∠AEF\angleAEF∠AEF是△EGF\triangleEGF△EGF的外交角且=∠EFD=\angleEFD=∠EFD,矛盾则AB∥CDAB\parallelCDAB∥CD
- 【今日EDA行业分析】2025年3月8日
知梦EDA
EDA行业分析半导体人工智能
今日行业分析:半导体行业技术博弈与国产EDA的突破与挑战一、引言在半导体行业的复杂生态系统中,EDA(电子设计自动化)技术处于核心地位,是连接芯片设计、制造与应用的关键纽带。当下,全球半导体领域正经历着激烈的技术博弈,国产EDA在这样的大环境下,既面临着诸多挑战,也迎来了难得的突破机遇。今天,我们将深入剖析EDA行业的现状,为广大CSDN读者带来一份全面的行业洞察。二、核心矛盾与行业动态(一)地缘
- 判断一个数是否是素数——Java(进阶高效算法)
Pniubi
Java错题集算法java
本文续写上一篇文章:判断一个数是否是素数——Java(初阶低效算法)上一篇中的for循环是从3直到n-1,这里通过Math.sqrt(n)的方法做出改进,使得循环的次数变少以加快运算效率和速率一、Math.sqrt(n)实际上就是开方如果一个数n不是质数,那么它一定可以分解成两个因数a和b,其中a*b=n。如果两个因数都大于sqrt(n),那么它们的乘积将大于n,这与a*b=n矛盾。因此,至少有一
- 代码随想录第二十五天|回溯算法part05--332.重新安排行程、51.N皇后、37.解数独
Aqua Cheng.
代码随想录算法训练营一刷算法java数据结构leetcode
刷题小记:三道困难题,理解成本不低,推荐结合题解视频进行理解。回溯问题的本质是暴力搜索,在面对过于复杂的问题时,要把握事物的主要矛盾,即应当先实现基本思路,再考虑剪枝(次要矛盾),否则可能不但没成功剪枝,反倒“枝横叶乱”。332.重新安排行程(332.重新安排行程)题目分析:给定一个航线列表List>tickets,其中tickets[i]=[fromi,toi]表示飞机出发和降落的机场地点。请对
- 四足机器人机架设计新突破!如何让AI机器人“站稳脚跟”?
CodePatentMaster
宇树机器人人工智能机器人科技
核心价值:通过创新的机架形状设计,显著提升四足机器人结构稳定性与运动适应性,为AI机器人提供高效承载平台。(申请人:杭州宇树科技有限公司;申请号:201730334315.4)一、专利技术深度解析技术背景传统四足机器人机架常面临结构笨重、负载分布不均、运动灵活性不足等问题,影响复杂环境下的作业效率。该专利通过优化机架形状设计,解决了机器人轻量化与高强度之间的矛盾,使其更适应动态场景需求。核心创新点
- Deepseek 不同版本有什么区别
百态老人
人工智能
嗯,我现在需要回答关于DeepSeek不同版本的区别的问题,我要仔细看一下我搜索到的资料,可能有些证据之间会有矛盾,需要小心处理。首先,我应该先梳理每个证据中提到的各个版本的信息,然后整理它们的发布时间、特点、优缺点以及对比情况。根据,DeepSeek的版本包括V1、V2、V2.5、R1-Lite、V3、R1系列。其中,V1在2024年1月发布,专注于自然语言处理和编码任务,但缺乏多模态支持和复杂
- 差点被开除的哈佛学子,最后为创业选择主动休学 | 比尔盖茨自传《源代码》
量子位
关注前沿科技量子位1973年,比尔·盖茨高中毕业,进入哈佛大学就读。彼时的他尚未意识到,未来三年,这座承载着三十四位诺贝尔奖得主荣光的学府,将在他的人生中交织出最激烈的矛盾与最果决的抉择。哈佛的舞台远比他想象中广阔:各路精英云集,竞争的浪潮汹涌澎湃。在学术的碰撞与现实的冲击下,盖茨的命运轨迹开始悄然扭转。当时,计算机还只是个新兴且略显晦涩的领域,年轻的盖茨已在哈佛大学开启了他的逐梦之旅——从数学领
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep