在Python中,如果我们想实现创建类似于序列和映射的类(可以迭代以及通过[下标]返回元素),可以通过重写魔法方法__getitem__、__setitem__、__delitem__、__len__
方法去模拟。
魔术方法的作用:
__getitem__(self,key):
返回键对应的值。
__setitem__(self,key,value):
设置给定键的值
__delitem__(self,key):
删除给定键对应的元素。
__len__():
返回元素的数量
【注释】只要实现了__getitem__
和 __len__
方法,就会被认为是序列。
- 可以用
__len__():
函数来查看对象长度 -
__getitem__(self,key):
可以对对象进行[]操作,如切片,索引,iterd等高级操作。 - 如果在类中定义了
__getitem__()
方法,那么他的实例对象(假设为P)就可以这样P[key]取值。当实例对象做P[key]运算时,就会调用类中的__getitem__()
方法。
这些魔术方法的原理就是:当我们对类的属性item进行下标的操作时,首先会被__getitem__()、__setitem__()、__delitem__()
拦截,从而执行我们在方法中设定的操作,如赋值,修改内容,删除内容等等。
这个方法应该以与键相关联的方式存储值,以便之后能够使用__setitem__
来获取。当然,这个对象可变时才需要实现这个方法。
举个栗子:
定义一副扑克牌(不包括大小王),对牌进行洗牌,然后发牌。
mport collections
Card = collections.namedtuple('Card',['rank','suit'])
#也可以使用一个类来定义Card
# class Card:
# def __init__(self,rank,suit):
# self.rank = rank
# self.suit = suit
class Puke:
ranks = [str(n) for n in range(2,11) ] + list('JQKA')
suits = "黑桃 方块 梅花 红心".split()
def __init__(self):
self._cards = [Card(rank,suit) for suit in self.suits for rank in self.ranks]
def __len__(self):
return len(self._cards)
def __getitem__(self, item):
return self._cards[item]
def __setitem__(self, key, value):
print(key,value)
self._cards[key] = value
pk = Puke()
# print(pk._cards)
# for card in pk:
print(card)
print(pk[2:6])
print(pk[12::13])
pk[1:3] = [Card(rank='A',suit='红桃')] * 3
print(pk[1:3])
Output:
[Card(rank='2', suit='黑桃'), Card(rank='3', suit='黑桃'), Card(rank='4', suit='黑桃'), Card(rank='5', suit='黑桃'), Card(rank='6', suit='黑桃'), Card(rank='7', suit='黑桃'), Card(rank='8', suit='黑桃'), Card(rank='9', suit='黑桃'), Card(rank='10', suit='黑桃'), Card(rank='J', suit='黑桃'), Card(rank='Q', suit='黑桃'), Card(rank='K', suit='黑桃'), Card(rank='A', suit='黑桃'), Card(rank='2', suit='方块'), Card(rank='3', suit='方块'), Card(rank='4', suit='方块'), Card(rank='5', suit='方块'), Card(rank='6', suit='方块'), Card(rank='7', suit='方块'), Card(rank='8', suit='方块'), Card(rank='9', suit='方块'), Card(rank='10', suit='方块'), Card(rank='J', suit='方块'), Card(rank='Q', suit='方块'), Card(rank='K', suit='方块'), Card(rank='A', suit='方块'), Card(rank='2', suit='梅花'), Card(rank='3', suit='梅花'), Card(rank='4', suit='梅花'), Card(rank='5', suit='梅花'), Card(rank='6', suit='梅花'), Card(rank='7', suit='梅花'), Card(rank='8', suit='梅花'), Card(rank='9', suit='梅花'), Card(rank='10', suit='梅花'), Card(rank='J', suit='梅花'), Card(rank='Q', suit='梅花'), Card(rank='K', suit='梅花'), Card(rank='A', suit='梅花'), Card(rank='2', suit='红心'), Card(rank='3', suit='红心'), Card(rank='4', suit='红心'), Card(rank='5', suit='红心'), Card(rank='6', suit='红心'), Card(rank='7', suit='红心'), Card(rank='8', suit='红心'), Card(rank='9', suit='红心'), Card(rank='10', suit='红心'), Card(rank='J', suit='红心'), Card(rank='Q', suit='红心'), Card(rank='K', suit='红心'), Card(rank='A', suit='红心')]
[Card(rank='4', suit='黑桃'), Card(rank='5', suit='黑桃'), Card(rank='6', suit='黑桃'), Card(rank='7', suit='黑桃')]
[Card(rank='A', suit='黑桃'), Card(rank='A', suit='方块'), Card(rank='A', suit='梅花'), Card(rank='A', suit='红心')]
slice(1, 3, None) [Card(rank='A', suit='红桃'), Card(rank='A', suit='红桃'), Card(rank='A', suit='红桃')]
[Card(rank='A', suit='红桃'), Card(rank='A', suit='红桃')]
【注意】
:我们会发现output中,输出了:slice(1, 3, None)
,下面给出解释。
切片原理
语法:
class slice(stop)
class slice(start, stop[, step])
参数说明:
- start -- 起始位置
- stop -- 结束位置
- step -- 间距
slice() 函数实现切片对象,主要用在切片操作函数里的参数传递。
slice用于规定序列的选取规则
举两个栗子来看看:
step = slice(0,5,2)
components = [11, 22, 66, 88, 99, 00, 123]
print(components[step])
Output:
[11, 66, 99]
切片原理
class MySeq:
def __getitem__(self, item):
return item
s = MySeq()
print(s[1])
print(s[1:4])
print(s[1:4:2])
print(s[1:4:2,7:9])
output
1
slice(1, 4, None)
slice(1, 4, 2)
(slice(1, 4, 2), slice(7, 9, None))
(程序员必会的 hhhhh.....)
看看slice在python3.7中是怎么描述的:
help(slice)
Help on class slice in module builtins:
class slice(object)
| slice(stop)
| slice(start, stop[, step])
|
| Create a slice object. This is used for extended slicing (e.g. a[0:10:2]).
|
| Methods defined here:
| 有点长。。。忽略 ********
| ----------------------------------------------------------------------
| Static methods defined here:
|
| __new__(*args, **kwargs) from builtins.type
| Create and return a new object. See help(type) for accurate signature.
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| start
|
| step
|
| stop
|
| ----------------------------------------------------------------------
| Data and other attributes defined here:
|
| __hash__ = None