在viewController中准备我们需要的步骤
1.设置上下文
2.创建图层
3.设置顶点数据
4.加载纹理
5.打开变换管道
- (void)filterInit {
//1\. 初始化上下文并设置为当前上下文
self.context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES2];
[EAGLContext setCurrentContext:self.context];
//2.开辟顶点数组内存空间
self.vertices = malloc(sizeof(SenceVertex) * 4);
//3.初始化顶点(0,1,2,3)的顶点坐标以及纹理坐标
self.vertices[0] = (SenceVertex){{-1, 1, 0}, {0, 1}};
self.vertices[1] = (SenceVertex){{-1, -1, 0}, {0, 0}};
self.vertices[2] = (SenceVertex){{1, 1, 0}, {1, 1}};
self.vertices[3] = (SenceVertex){{1, -1, 0}, {1, 0}};
//4.创建图层(CAEAGLLayer)
CAEAGLLayer *layer = [[CAEAGLLayer alloc] init];
//设置图层frame
layer.frame = CGRectMake(0, 100, self.view.frame.size.width, self.view.frame.size.width);
//设置图层的scale
layer.contentsScale = [[UIScreen mainScreen] scale];
//给View添加layer
[self.view.layer addSublayer:layer];
//5.绑定渲染缓存区
[self bindRenderLayer:layer];
//6.获取处理的图片路径
NSString *imagePath = [[[NSBundle mainBundle] resourcePath] stringByAppendingPathComponent:@"kunkun.jpg"];
//读取图片
UIImage *image = [UIImage imageWithContentsOfFile:imagePath];
//将JPG图片转换成纹理图片
GLuint textureID = [self createTextureWithImage:image];
//设置纹理ID
self.textureID = textureID; // 将纹理 ID 保存,方便后面切换滤镜的时候重用
//7.设置视口
glViewport(0, 0, self.drawableWidth, self.drawableHeight);
//8.设置顶点缓存区
GLuint vertexBuffer;
glGenBuffers(1, &vertexBuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
GLsizeiptr bufferSizeBytes = sizeof(SenceVertex) * 4;
glBufferData(GL_ARRAY_BUFFER, bufferSizeBytes, self.vertices, GL_STATIC_DRAW);
//9.设置默认着色器
[self setupNormalShaderProgram]; // 一开始选用默认的着色器
//10.将顶点缓存保存,退出时才释放
self.vertexBuffer = vertexBuffer;
}
绑定渲染缓存区和帧缓存区
- (void)bindRenderLayer:(CALayer *)layer {
//1.渲染缓存区,帧缓存区对象
GLuint renderBuffer;
GLuint frameBuffer;
//2.获取帧渲染缓存区名称,绑定渲染缓存区以及将渲染缓存区与layer建立连接
glGenRenderbuffers(1, &renderBuffer);
glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer);
[self.context renderbufferStorage:GL_RENDERBUFFER fromDrawable:layer];
//3.获取帧缓存区名称,绑定帧缓存区以及将渲染缓存区附着到帧缓存区上
glGenFramebuffers(1, &frameBuffer);
glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer);
glFramebufferRenderbuffer(GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_RENDERBUFFER,
renderBuffer);
}
纹理加载
- (GLuint)createTextureWithImage:(UIImage *)image {
//1、将 UIImage 转换为 CGImageRef
CGImageRef cgImageRef = [image CGImage];
//判断图片是否获取成功
if (!cgImageRef) {
NSLog(@"Failed to load image");
exit(1);
}
//2、读取图片的大小,宽和高
GLuint width = (GLuint)CGImageGetWidth(cgImageRef);
GLuint height = (GLuint)CGImageGetHeight(cgImageRef);
//获取图片的rect
CGRect rect = CGRectMake(0, 0, width, height);
//获取图片的颜色空间
CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
//3.获取图片字节数 宽*高*4(RGBA)
void *imageData = malloc(width * height * 4);
//4.创建上下文
/*
参数1:data,指向要渲染的绘制图像的内存地址
参数2:width,bitmap的宽度,单位为像素
参数3:height,bitmap的高度,单位为像素
参数4:bitPerComponent,内存中像素的每个组件的位数,比如32位RGBA,就设置为8
参数5:bytesPerRow,bitmap的没一行的内存所占的比特数
参数6:colorSpace,bitmap上使用的颜色空间 kCGImageAlphaPremultipliedLast:RGBA
*/
CGContextRef context = CGBitmapContextCreate(imageData, width, height, 8, width * 4, colorSpace, kCGImageAlphaPremultipliedLast | kCGBitmapByteOrder32Big);
//将图片翻转过来(图片默认是倒置的)
CGContextTranslateCTM(context, 0, height);
CGContextScaleCTM(context, 1.0f, -1.0f);
CGColorSpaceRelease(colorSpace);
CGContextClearRect(context, rect);
//对图片进行重新绘制,得到一张新的解压缩后的位图
CGContextDrawImage(context, rect, cgImageRef);
//设置图片纹理属性
//5\. 获取纹理ID
GLuint textureID;
glGenTextures(1, &textureID);
glBindTexture(GL_TEXTURE_2D, textureID);
//6.载入纹理2D数据
/*
参数1:纹理模式,GL_TEXTURE_1D、GL_TEXTURE_2D、GL_TEXTURE_3D
参数2:加载的层次,一般设置为0
参数3:纹理的颜色值GL_RGBA
参数4:宽
参数5:高
参数6:border,边界宽度
参数7:format
参数8:type
参数9:纹理数据
*/
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageData);
//7.设置纹理属性
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
//8.绑定纹理
/*
参数1:纹理维度
参数2:纹理ID,因为只有一个纹理,给0就可以了。
*/
glBindTexture(GL_TEXTURE_2D, 0);
//9.释放context,imageData
CGContextRelease(context);
free(imageData);
//10.返回纹理ID
return textureID;
}
初始化着色器
- (void)setupShaderProgramWithName:(NSString *)name {
//1\. 获取着色器program
GLuint program = [self programWithShaderName:name];
//2\. use Program
glUseProgram(program);
//3\. 获取Position,Texture,TextureCoords 的索引位置
GLuint positionSlot = glGetAttribLocation(program, "Position");
GLuint textureSlot = glGetUniformLocation(program, "Texture");
GLuint textureCoordsSlot = glGetAttribLocation(program, "TextureCoords");
//4.激活纹理,绑定纹理ID
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, self.textureID);
//5.纹理sample
glUniform1i(textureSlot, 0);
//6.打开positionSlot 属性并且传递数据到positionSlot中(顶点坐标)
glEnableVertexAttribArray(positionSlot);
glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, sizeof(SenceVertex), NULL + offsetof(SenceVertex, positionCoord));
//7.打开textureCoordsSlot 属性并传递数据到textureCoordsSlot(纹理坐标)
glEnableVertexAttribArray(textureCoordsSlot);
glVertexAttribPointer(textureCoordsSlot, 2, GL_FLOAT, GL_FALSE, sizeof(SenceVertex), NULL + offsetof(SenceVertex, textureCoord));
//8.保存program,界面销毁则释放
self.program = program;
}
这里我们需要加载自定义着色器,并且进行编译链接获取program这个id。
void glGetShaderiv(GLuint shader,GLenum pname,GLint *params);
参数
shader
指定要查询的着色器对象,直接放入需要检查的着色器即可。
pname
指定着色器对象的参数。 可接受的符号名称为
GL_SHADER_TYPE | 用来判断并返回着色器类型 |
---|---|
GL_DELETE_STATUS | 判断着色器是否被删除 |
GL_COMPILE_STATUS | 用于检测编译是否成功 |
GL_INFO_LOG_LENGTH | 用于返回着色器的信息日志的长度 |
GL_SHADER_SOURCE_LENGTH | 返回着色器源码长度,不存在则返回0 |
#pragma mark -shader compile and link
//link Program
- (GLuint)programWithShaderName:(NSString *)shaderName {
//1\. 编译顶点着色器/片元着色器
GLuint vertexShader = [self compileShaderWithName:shaderName type:GL_VERTEX_SHADER];
GLuint fragmentShader = [self compileShaderWithName:shaderName type:GL_FRAGMENT_SHADER];
//2\. 将顶点/片元附着到program
GLuint program = glCreateProgram();
glAttachShader(program, vertexShader);
glAttachShader(program, fragmentShader);
//3.linkProgram
glLinkProgram(program);
//4.检查是否link成功
GLint linkSuccess;
glGetProgramiv(program, GL_LINK_STATUS, &linkSuccess);
if (linkSuccess == GL_FALSE) {
GLchar messages[256];
glGetProgramInfoLog(program, sizeof(messages), 0, &messages[0]);
NSString *messageString = [NSString stringWithUTF8String:messages];
NSAssert(NO, @"program链接失败:%@", messageString);
exit(1);
}
//5.返回program
return program;
}
//编译shader代码
- (GLuint)compileShaderWithName:(NSString *)name type:(GLenum)shaderType {
//1.获取shader 路径
NSString *shaderPath = [[NSBundle mainBundle] pathForResource:name ofType:shaderType == GL_VERTEX_SHADER ? @"vsh" : @"fsh"];
NSError *error;
NSString *shaderString = [NSString stringWithContentsOfFile:shaderPath encoding:NSUTF8StringEncoding error:&error];
if (!shaderString) {
NSAssert(NO, @"读取shader失败");
exit(1);
}
//2\. 创建shader->根据shaderType
GLuint shader = glCreateShader(shaderType);
//3.获取shader source
const char *shaderStringUTF8 = [shaderString UTF8String];
int shaderStringLength = (int)[shaderString length];
glShaderSource(shader, 1, &shaderStringUTF8, &shaderStringLength);
//4.编译shader
glCompileShader(shader);
//5.查看编译是否成功
GLint compileSuccess;
glGetShaderiv(shader, GL_COMPILE_STATUS, &compileSuccess);
if (compileSuccess == GL_FALSE) {
GLchar messages[256];
glGetShaderInfoLog(shader, sizeof(messages), 0, &messages[0]);
NSString *messageString = [NSString stringWithUTF8String:messages];
NSAssert(NO, @"shader编译失败:%@", messageString);
exit(1);
}
//6.返回shader
return shader;
}
滤镜点击的代理方法,每次点击之后,界面重新渲染
#pragma mark - FilterBarDelegate
- (void)filterBar:(FilterBar *)filterBar didScrollToIndex:(NSUInteger)index {
//1\. 选择默认shader
if (index == 0) {
[self setupNormalShaderProgram];
}else if(index == 1)
{
[self setupSplitScreen_2ShaderProgram];
}else if(index == 2)
{
[self setupSplitScreen_3ShaderProgram];
}else if(index == 3)
{
[self setupSplitScreen_4ShaderProgram];
}else if(index == 4)
{
[self setupSplitScreen_6ShaderProgram];
}else if(index == 5)
{
[self setupSplitScreen_9ShaderProgram];
}
// 重新开始滤镜动画'.
[self startFilerAnimation];
}
// 开始一个滤镜动画
- (void)startFilerAnimation {
//1.判断displayLink 是否为空
//CADisplayLink 定时器
if (self.displayLink) {
[self.displayLink invalidate];
self.displayLink = nil;
}
//2\. 设置displayLink 的方法
self.startTimeInterval = 0;
self.displayLink = [CADisplayLink displayLinkWithTarget:self selector:@selector(timeAction)];
//3.将displayLink 添加到runloop 运行循环
[self.displayLink addToRunLoop:[NSRunLoop mainRunLoop]
forMode:NSRunLoopCommonModes];
}
//2\. 动画
- (void)timeAction {
//DisplayLink 的当前时间撮
if (self.startTimeInterval == 0) {
self.startTimeInterval = self.displayLink.timestamp;
}
//使用program
glUseProgram(self.program);
//绑定buffer
glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer);
// 传入时间
CGFloat currentTime = self.displayLink.timestamp - self.startTimeInterval;
GLuint time = glGetUniformLocation(self.program, "Time");
glUniform1f(time, currentTime);
// 清除画布
glClear(GL_COLOR_BUFFER_BIT);
glClearColor(1, 1, 1, 1);
// 重绘
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
//渲染到屏幕上
[self.context presentRenderbuffer:GL_RENDERBUFFER];
}
最后,当页面消失的时候需要释放并移除
//释放
- (void)dealloc {
//1.上下文释放
if ([EAGLContext currentContext] == self.context) {
[EAGLContext setCurrentContext:nil];
}
//顶点缓存区释放
if (_vertexBuffer) {
glDeleteBuffers(1, &_vertexBuffer);
_vertexBuffer = 0;
}
//顶点数组释放
if (_vertices) {
free(_vertices);
_vertices = nil;
}
}
- (void)viewWillDisappear:(BOOL)animated {
[super viewWillDisappear:animated];
// 移除 displayLink
if (self.displayLink) {
[self.displayLink invalidate];
self.displayLink = nil;
}
}
分屏计算
首先我们需要了解一下在vsh和fsh文件中是如何编写的,实现了分屏效果。其实我们的顶点着色器是不需要修改,主要修改的是纹理着色器。
顶点着色器
attribute vec4 Position;
attribute vec2 TextureCoords;
varying vec2 TextureCoordsVarying;
void main (void) {
gl_Position = Position;
TextureCoordsVarying = TextureCoords;
}
纹理着色器
这里每一种分屏类型对应一个文件,这只是汇总它实现效果的算法。
//一张图片
precision highp float;
uniform sampler2D Texture;
varying vec2 TextureCoordsVarying;
//一张图片
void main (void) {
vec4 mask = texture2D(Texture, TextureCoordsVarying);
gl_FragColor = vec4(mask.rgb, 1.0);
}
二分屏
所谓二分屏,就是当显示一张图片的时候,截取纹理Y坐标下0.25-0.75的位置,为什么是0.25至0.75了,因为在我们拍摄的过程,大多图片的核心内容显示在这个区域。我们知道纹理的坐标范围是(0,1)
//两张图片
void main() {
vec2 uv = TextureCoordsVarying.xy;
float y;
if (uv.y >= 0.0 && uv.y <= 0.5) {
y = uv.y + 0.25;
} else {
y = uv.y - 0.25;
}
gl_FragColor = texture2D(Texture, vec2(uv.x, y));
}
三分屏
三分屏和二分屏的原理一样,判断的位置变成了1/3处:
//三张
void main() {
vec2 uv = TextureCoordsVarying.xy;
if (uv.y < 1.0/3.0) {
uv.y = uv.y + 1.0/3.0;
} else if (uv.y > 2.0/3.0){
uv.y = uv.y - 1.0/3.0;
}
gl_FragColor = texture2D(Texture, uv);
}
四分屏
四分屏特点:原样显示图片的大小,不放大缩小,从代码中我们可以看出,当纹理坐标(x,y)在0-0.5的时候,我们让其乘以2,为什么?原来纹理坐标在0到0.5的时候,获取纹理的时候,只能对应纹理0到0.5,使其乘以2,原本0到0.5的范围就变成了0到1,当纹理坐标(x,y)大于0.5的时候,先减去0.5,再乘以2,也使其0.5到1的范围先变成0到0.5,最后变成0到1,这样,当获取纹理的时候,无论从0到0.5的范围,还是0.5到1的范围,都是变成获取(0,1)整张图片。究其根本原因就是改变纹理坐标获取的纹理位置。
//四张
void main() {
vec2 uv = TextureCoordsVarying.xy;
if(uv.x <= 0.5){
uv.x = uv.x * 2.0;
}else{
uv.x = (uv.x - 0.5) * 2.0;
}
if (uv.y<= 0.5) {
uv.y = uv.y * 2.0;
}else{
uv.y = (uv.y - 0.5) * 2.0;
}
gl_FragColor = texture2D(Texture, uv);
}
六分屏
你看懂了2/3/4分屏原理,6和9分屏原理就很简单了,6分屏实现原理就是同时改变纹理坐标的值,x坐标取三分之一处,Y坐标取0.5之处,主要是看你的图拍你的样子,原理示意图参照2/3/4分屏
//六张
void main() {
vec2 uv = TextureCoordsVarying.xy;
if(uv.x <= 1.0 / 3.0){
uv.x = uv.x + 1.0/3.0;
}else if(uv.x >= 2.0/3.0){
uv.x = uv.x - 1.0/3.0;
}
if(uv.y <= 0.5){
uv.y = uv.y + 0.25;
}else {
uv.y = uv.y - 0.25;
}
gl_FragColor = texture2D(Texture, uv);
}
九分屏
九分屏原理和四分屏原理一样,只是x,y分屏的地方选择的是1/3,2/3处,相关流程示意图,请参照4分屏示意图
//九张
void main() {
vec2 uv = TextureCoordsVarying.xy;
if (uv.x < 1.0 / 3.0) {
uv.x = uv.x * 3.0;
} else if (uv.x < 2.0 / 3.0) {
uv.x = (uv.x - 1.0 / 3.0) * 3.0;
} else {
uv.x = (uv.x - 2.0 / 3.0) * 3.0;
}
if (uv.y <= 1.0 / 3.0) {
uv.y = uv.y * 3.0;
} else if (uv.y < 2.0 / 3.0) {
uv.y = (uv.y - 1.0 / 3.0) * 3.0;
} else {
uv.y = (uv.y - 2.0 / 3.0) * 3.0;
}
gl_FragColor = texture2D(Texture, uv);
}