目录
沈阳市的空气质量
华夫图
柱状图
总结
五城P.M.2.5数据分析与可视化——北京市、上海市、广州市、沈阳市、成都市,使用华夫图和柱状图分析各个城市的情况
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pywaffle import Waffle
#读入文件
sy = pd.read_csv('./Shenyang.csv')
fig = plt.figure(dpi=100,figsize=(5,5))
def good(pm):
#优
degree = []
for i in pm:
if 0 < i <= 35:
degree.append(i)
return degree
def moderate(pm):
#良
degree = []
for i in pm:
if 35 < i <= 75:
degree.append(i)
return degree
def lightlyP(pm):
#轻度污染
degree = []
for i in pm:
if 75 < i <= 115:
degree.append(i)
return degree
def moderatelyP(pm):
#中度污染
degree = []
for i in pm:
if 115 < i <= 150:
degree.append(i)
return degree
def heavilyP(pm):
#重度污染
degree = []
for i in pm:
if 150 < i <= 250:
degree.append(i)
return degree
def severelyP(pm):
#严重污染
degree = []
for i in pm:
if 250 < i:
degree.append(i)
return degree
def PM(sy,str3):
sy_dist_pm = sy.loc[:, [str3]]
sy_dist1_pm = sy_dist_pm.dropna(axis=0, subset=[str3])
sy_dist1_pm = np.array(sy_dist1_pm[str3])
sy_good_count = len(good(sy_dist1_pm))
sy_moderate_count = len(moderate(sy_dist1_pm))
sy_lightlyP_count = len(lightlyP(sy_dist1_pm))
sy_moderatelyP_count = len(moderatelyP(sy_dist1_pm))
sy_heavilyP_count = len(heavilyP(sy_dist1_pm))
sy_severelyP_count = len(severelyP(sy_dist1_pm))
a = {'优':sy_good_count,'良':sy_moderate_count,'轻度污染':sy_lightlyP_count,'中度污染':sy_moderatelyP_count,'重度污染':sy_heavilyP_count,'严重污染':sy_severelyP_count}
pm = pd.DataFrame(pd.Series(a),columns=['daysum'])
pm = pm.reset_index().rename(columns={'index':'level'})
return pm
#沈阳
#PM_Taiyuanjie列
sy_tyj = PM(sy,'PM_Taiyuanjie')
PMday_Taiyuanjie = np.array(sy_tyj['daysum'])
#PM_Xiaoheyan列
sy_xhy = PM(sy,'PM_Xiaoheyan')
PMday_Xiaoheyan = np.array(sy_xhy['daysum'])
sy_pm_daysum = (PMday_Xiaoheyan+PMday_Taiyuanjie)/2
sum = 0
for i in sy_pm_daysum:
sum += i
sy_pm_daysum1 = np.array(sy_pm_daysum)
data = {'优':int((sy_pm_daysum[0]/sum)*100), '良':int((sy_pm_daysum[1]/sum)*100), '轻度污染': int(sy_pm_daysum[2]/sum*100),'中度污染':int((sy_pm_daysum[3]/sum)*100),'重度污染':int((sy_pm_daysum[4]/sum)*100),'严重污染':int((sy_pm_daysum[5]/sum)*100)}
total = np.sum(list(data.values()))
plt.figure(
FigureClass=Waffle,
rows = 5, # 列数自动调整
values = data,
# 设置title
title = {
'label': "沈阳市污染情况",
'loc': 'center',
'fontdict':{
'fontsize': 13,
}
},
labels = ['{} {:.1f}%'.format(k, (v/total*100)) for k, v in data.items()],
# 设置标签图例的样式
legend = {
'loc': 'lower left',
'bbox_to_anchor': (0, -0.4),
'ncol': len(data),
'framealpha': 0,
'fontsize': 6
},
dpi=120
)
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.show()
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#读入文件
sy = pd.read_csv('./Shenyang.csv')
fig = plt.figure(dpi=100,figsize=(5,5))
def good(pm):
#优
degree = []
for i in pm:
if 0 < i <= 35:
degree.append(i)
return degree
def moderate(pm):
#良
degree = []
for i in pm:
if 35 < i <= 75:
degree.append(i)
return degree
def lightlyP(pm):
#轻度污染
degree = []
for i in pm:
if 75 < i <= 115:
degree.append(i)
return degree
def moderatelyP(pm):
#中度污染
degree = []
for i in pm:
if 115 < i <= 150:
degree.append(i)
return degree
def heavilyP(pm):
#重度污染
degree = []
for i in pm:
if 150 < i <= 250:
degree.append(i)
return degree
def severelyP(pm):
#严重污染
degree = []
for i in pm:
if 250 < i:
degree.append(i)
return degree
def PM(sy,str3):
sy_dist_pm = sy.loc[:, [str3]]
sy_dist1_pm = sy_dist_pm.dropna(axis=0, subset=[str3])
sy_dist1_pm = np.array(sy_dist1_pm[str3])
sy_good_count = len(good(sy_dist1_pm))
sy_moderate_count = len(moderate(sy_dist1_pm))
sy_lightlyP_count = len(lightlyP(sy_dist1_pm))
sy_moderatelyP_count = len(moderatelyP(sy_dist1_pm))
sy_heavilyP_count = len(heavilyP(sy_dist1_pm))
sy_severelyP_count = len(severelyP(sy_dist1_pm))
a = {'优':sy_good_count,'良':sy_moderate_count,'轻度污染':sy_lightlyP_count,'中度污染':sy_moderatelyP_count,'重度污染':sy_heavilyP_count,'严重污染':sy_severelyP_count}
pm = pd.DataFrame(pd.Series(a),columns=['daysum'])
pm = pm.reset_index().rename(columns={'index':'level'})
return pm
#沈阳
#PM_Taiyuanjie列
sy_tyj = PM(sy,'PM_Taiyuanjie')
PMday_Taiyuanjie = np.array(sy_tyj['daysum'])
#PM_Xiaoheyan列
sy_xhy = PM(sy,'PM_Xiaoheyan')
PMday_Xiaoheyan = np.array(sy_xhy['daysum'])
sy_pm_daysum = (PMday_Xiaoheyan+PMday_Taiyuanjie)/2
sum = 0
for i in sy_pm_daysum:
sum += i
sy_pm_daysum1 = np.array(sy_pm_daysum)
#图像
bar_width = 0.1
plt.bar(0.2,sy_pm_daysum[0]/sum,width=bar_width,color='aqua',label='优')
plt.bar(0.4,sy_pm_daysum[1]/sum,width=bar_width,color='deepskyblue',label='良')
plt.bar(0.6,sy_pm_daysum[2]/sum,width=bar_width,color='cornflowerblue',label='轻度污染')
plt.bar(0.8,sy_pm_daysum[3]/sum,width=bar_width,color='skyblue',label='中度污染')
plt.bar(1,sy_pm_daysum[4]/sum,width=bar_width,color='lightsteelblue',label='重度污染')
plt.bar(1.2,sy_pm_daysum[5]/sum,width=bar_width,color='silver',label='严重污染')
x = [0.2,0.4,0.6,0.8,1,1.2]
for a,b in zip(x,sy_pm_daysum):
plt.text(a, (b/sum) + 0.02,'%.1f'%(b/sum*100)+'%', ha='center', va='bottom', fontsize=10)
plt.xticks([0.2,0.4,0.6,0.8,1,1.2])
plt.xlabel(['优','良','轻度污染','中度污染','重度污染','严重污染'])
plt.yticks([0.2,0.4,0.6,0.8,1])
plt.ylabel(['20%','40%','60%','80%','100%'])
plt.ylabel(u'百分比',fontsize=12,rotation='horizontal',verticalalignment='top',horizontalalignment='left', x=2,y=1.1)
plt.xlabel(u'污染程度',fontsize=12,verticalalignment='top',horizontalalignment='left',x=0.9, y=1.2)
plt.legend()
fig.suptitle('沈阳市污染情况',fontsize=15,x=0.5,y=1)
plt.grid(alpha=0.4)
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.show()
沈阳市总体空气质量较差,空气污染程度占比超过35%——其中轻度污染占比约16%,中度污染占比约7%,重度污染占比约8%,严重污染占比约3%。
总体来讲,广州市的空气质量最好,上海次之;北京市的空气质量最差,严重污染占比远远超过其他四座城市。