创建⼀个TCP的socket,同时在内核中创建⼀个发送缓冲区和⼀个接收缓冲区;
• 调⽤write时,数据会先写⼊发送缓冲区中;
• 如果发送的字节数太⻓,会被拆分成多个TCP的数据包发出;
• 如果发送的字节数太短,就会先在缓冲区⾥等待,等到缓冲区⻓度差不多了,或者其他合适的时机发送出去;
• 接收数据的时候,数据也是从⽹卡驱动程序到达内核的接收缓冲区;
• 然后应⽤程序可以调⽤read从接收缓冲区拿数据;
• 另⼀⽅⾯,TCP的⼀个连接,既有发送缓冲区,也有接收缓冲区,那么对于这⼀个连接,既可以读数据,也可以写数据.这个概念叫做全双⼯
由于缓冲区的存在,TCP程序的读和写不需要⼀⼀匹配,例如:
• 写100个字节数据时,可以调⽤⼀次write写100个字节,也可以调⽤100次write,每次写⼀个字节;
• 读100个字节数据时,也完全不需要考虑写的时候是怎么写的,既可以⼀次read100个字节,也可以⼀次read⼀个字节,重复100次;
• ⾸先要明确,粘包问题中的"包",是指的应⽤层的数据包.
• 在TCP的协议头中,没有如同UDP⼀样的"报⽂⻓度"这样的字段,但是有⼀个序号这样的字段.
• 站在传输层的⻆度,TCP是⼀个⼀个报⽂过来的.按照序号排好序放在缓冲区中.
• 站在应⽤层的⻆度,看到的只是⼀串连续的字节数据.
• 那么应⽤程序看到了这么⼀连串的字节数据,就不知道从哪个部分开始到哪个部分,是⼀个完整的应⽤层数据包.
那么如何避免粘包问题呢?归根结底就是⼀句话,明确两个包之间的边界.
上述的这样的问题,都是应该在设计应用层协议的时候把这些问题都考虑进去了
思考:对于UDP协议来说,是否也存在"粘包问题"呢?
• 对于UDP,如果还没有上层交付数据,UDP的报⽂⻓度仍然在.同时,UDP是⼀个⼀个把数据交付给应⽤层.就有很明确的数据边界.
• 站在应⽤层的站在应⽤层的⻆度,使⽤UDP的时候,要么收到完整的UDP报⽂,要么不收.不会出现"半个"的情况。
为什么TCP这么复杂?因为要保证可靠性,同时⼜尽可能的提⾼性能.
可靠性:
• 校验和
• 序列号(按序到达)
• 确认应答
• 超时重发
• 连接管理
• 流量控制
• 拥塞控制
提高性能:
• 滑动窗⼝
• 快速重传
• 延迟应答
• 捎带应答