给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200
本题是动态规划中01背包的典型问题,具体来说,就是先求出数组总和除以二作为背包的最大容量,之后利用01背包套路往背包里面塞数字,注意因为是为了求和,数字的重量和价值都是他本身nums【i】,其余的按照01背包公式即可:
class Solution {
public:
bool canPartition(vector& nums) {
int sum = 0;
// dp[i]中的i表示背包内总和
// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector dp(10001, 0);
for (int i = 0; i < nums.size(); i++) {
sum += nums[i];
}
// 也可以使用库函数一步求和
// int sum = accumulate(nums.begin(), nums.end(), 0);
if (sum % 2 == 1) return false;
int target = sum / 2;
// 开始 01背包
for(int i = 0; i < nums.size(); i++) {
for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
}
}
// 集合中的元素正好可以凑成总和target
if (dp[target] == target) return true;
return false;
}
};
有一堆石头,每块石头的重量都是正整数。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。
本题主要是要把石头尽可能分成大小相同的两堆,让重量大的那堆减去重量小的那堆:
class Solution {
public:
int lastStoneWeightII(vector& stones) {
vector dp(15001, 0);
int sum = 0;
for (int i = 0; i < stones.size(); i++) sum += stones[i];
int target = sum / 2;
for (int i = 0; i < stones.size(); i++) { // 遍历物品
for (int j = target; j >= stones[i]; j--) { // 遍历背包
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
return sum - dp[target] - dp[target];
}
};
给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
建议不懂的同学自己先用二维数组来做,比较好理解,理解了之后再用一维数组。
1. 含义:dp【i】【j】:从下标为【0...i】的物品里任取,填满j这么⼤容积的包,有dp【i】【j】种⽅法
2. 递推式:dp【i】【j】 = dp【i-1】【j】 + dp【i-1】[j-nums【i】]
dp【i-1】【j】是不将物品i放入背包的方式数,dp【i-1】[j-nums【i】]是将物品i放入背包的方式数
3. 初始化:dp【0】【0】 = 1 表示装满容量为0的背包,有1种⽅法,就是装0件物品。
如果nums【0】在范围内的话,dp【0】[nums【0】] = 1
其他全为0
4. 计算顺序:顺序,行优先
大家也可以记住,在求装满背包有几种方法的情况下,递推公式一般为:
dp[j] += dp[j - nums[i]];
如何转化为01背包问题呢。
假设加法的总和为x,那么减法对应的总和就是sum - x。
所以我们要求的是 x - (sum - x) = target
x = (target + sum) / 2
此时问题就转化为,装满容量为x的背包,有几种方法。
这里的x,就是bagSize,也就是我们后面要求的背包容量。
class Solution {
public:
int findTargetSumWays(vector& nums, int S) {
int sum = 0;
for (int i = 0; i < nums.size(); i++) sum += nums[i];
if (abs(S) > sum) return 0; // 此时没有方案
if ((S + sum) % 2 == 1) return 0; // 此时没有方案
int bagSize = (S + sum) / 2;
vector dp(bagSize + 1, 0);
dp[0] = 1;
for (int i = 0; i < nums.size(); i++) {
for (int j = bagSize; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[bagSize];
}
};