MySQL5.7 百万数据迁移到 ElasticSearch7.x

前言

在日常项目开发中,可能会遇到使用 ES 做关键词搜索的场景,但是一般来说业务数据是不会直接通过 CRUD 写进 ES 的。

因为这可能违背了 ES 是用来查询的初衷,数据持久化的事情可以交给数据库来做。那么,这里就有一个显而易见的问题:ES 里的数据从哪里来?

本文介绍的就是如何将 MySQL 的表数据迁移到 ES 的全过程。

一、一次性全量

该方案的思路很简单直接:将数据库中的表数据一次性查出,放入内存,在转换 DB 与 ES 的实体结构,遍历循环将 DB 的数据 放入 ES 中。

但是对机器的性能考验非常大:本地 MySQL 10w 条数据,电脑内存16GB,仅30秒钟内存占用90%,CPU占用100%。太过于粗暴了,不推荐使用。

@Component05
@Slf4j
public class FullSyncArticleToES implements CommandLineRunner {

    @Resource
    private ArticleMapper articleMapper;

    @Resource
    private ArticleRepository articleRepository;

    /**
     * 执行一次即可全量迁移
     */
    //todo: 弊端太明显了,数据量一大的话,对内存和 cpu 都是考验,不推荐这么简单粗暴的方式
    public void fullSyncArticleToES() {
        LambdaQueryWrapper
wrapper = new LambdaQueryWrapper<>(); List
articleList = articleMapper.selectList(wrapper); if (CollectionUtils.isNotEmpty(articleList)) { List esArticleList = articleList.stream().map(ESArticle::dbToEs).collect(Collectors.toList()); final int pageSize = 500; final int total = esArticleList.size(); log.info("------------FullSyncArticleToES start!-----------, total {}", total); for (int i = 0; i < total; i += pageSize) { int end = Math.min(i + pageSize, total); log.info("------sync from {} to {}------", i, end); articleRepository.saveAll(esArticleList.subList(i, end)); } log.info("------------FullSyncPostToEs end!------------, total {}", total); } else { log.info("------------DB no Data!------------"); } } @Override public void run(String... args) {} }

二、定时任务增量

这种方案的思想是按时间范围以增量的方式读取,比全量的一次性数据量要小很多。

也存在弊端:频繁的数据库连接 + 读写,对服务器资源消耗较大。且在极端短时间内大量数据写入的场景,可能会导致性能、数据不一致的问题(即来不及把所有数据都查到,同时还要写到 ES)。

但还是有一定的可操作性,毕竟可能没有那么极端的情况,高并发写入的场景不会时刻都有。

@Component
@Slf4j
public class IncSyncArticleToES {
    @Resource
    private ArticleMapper articleMapper;

    @Resource
    private ArticleRepository articleRepository;

    /**
     * 每分钟执行一次
     */
    @Scheduled(fixedRate = 60 * 1000)
    public void run() {
        // 查询近 5 分钟内的数据,有 id 重复的数据 ES 会自动覆盖
        Da

你可能感兴趣的:(canal)