int[] segT = new int[4*n]
tips:长方格中的left、right,分别代表该节点所求得的区间和。例如,left:0,right:4。代表nums中索引0到4的和=2+5+1+4+3=15。
public void build(int index, int left, int right) {
// 2.1.1的工作,递归条件,不可再分区间
if (left == right) {
segT[index] = nums[left];
return;
}
// 2.1.1的工作,区间多次二分
int mid = (right - left) / 2 + left;
// 左子树根节点的索引
int leftIndex = index * 2;
// 右子树根节点的索引
int rightIndex= index * 2 + 1;
// 构建左、右子树
build(leftIndex, left, mid);
build(rightIndex, mid+1, right);
// 2.1.2的工作,求根节点的和
// tips:只有当left==right返回后,才会走这一步
segT[index] = segT[leftIndex] + segT[rightIndex];
}
逻辑其实和建树一样,在线段树中找到修改节点的对应索引,然后修改其值,然后再依次修改根节点的值即可。
public void update(int index, int start, int end, int updateIndex, int value) {
// 找到叶子节点,直接修改值(不可再分区间了)
if (start == end) {
nums[updateIndex] = value;
segT[index] = value;
return;
}
int mid = (start + end) / 2;
int leftIndex = index * 2;
int rightIndex = index * 2 + 1;
// 修改的节点再左子树还是右子树
if (updateIndex >= start && updateIndex <= mid) {
update(leftIndex, start, mid, updateIndex, value);
} else {
update(rightIndex, mid + 1, end, updateIndex, value);
}
segT[index] = segT[leftIndex] + segT[rightIndex];
}
查询的逻辑会稍微复杂一点,因为有三个因素:
public int querySum(int index, int start, int end, int left, int right) {
// 查询的索引无效(不是线段树的有意义范围)
if (left > end || right < start) {
return 0;
}
// 查询的范围包含该子树的范围,直接返回即可(见下图【包含子树】)
else if (left <= start && right >= end) {
return st[index].sum;
}
// 求的左右子树的索引
int mid = (start + end) / 2;
int leftIndex = index * 2;
int rightIndex = index * 2 + 1;
// 左、右子树求得的值
int leftSum = querySum(leftIndex, start, mid, left, right);
int rightSum = querySum(rightIndex, mid + 1, end, left, right);
return leftSum + rightSum;
}
public class SegmentTree {
class Node {
int left;
int right;
int max;
int min;
int sum;
Node() {}
Node (int left, int right) {
this.left = left;
this.right = right;
this.max = Integer.MIN_VALUE;
this.min = Integer.MAX_VALUE;
this.sum = 0;
}
}
int n;
Node[] st;
int[] nums;
public void build(int index, int left, int right) {
if (left == right) {
st[index].sum = nums[left];
st[index].max = nums[left];
st[index].min = nums[left];
return;
}
int mid = (right - left) / 2 + left;
int leftIndex = index * 2;
int rightIndex= index * 2 + 1;
build(leftIndex, left, mid);
build(rightIndex, mid+1, right);
st[index].max = Math.max(st[leftIndex].max, st[rightIndex].max);
st[index].min = Math.min(st[leftIndex].min, st[rightIndex].min);
st[index].sum = st[leftIndex].sum + st[rightIndex].sum;
}
public void init(int N, int[] arr) {
n = N;
st = new Node[4 * n + 1];
for (int i = 1; i <= 4 * n; i++) {
st[i] = new Node();
}
nums = arr;
}
public int querySum(int left, int right) {
return querySum(1, 0, n-1, left, right);
}
public int querySum(int index, int start, int end, int left, int right) {
if (left > end || right < start) {
return 0;
} else if (left <= start && right >= end) {
return st[index].sum;
}
int mid = (start + end) / 2;
int leftIndex = index * 2;
int rightIndex = index * 2 + 1;
int leftSum = querySum(leftIndex, start, mid, left, right);
int rightSum = querySum(rightIndex, mid + 1, end, left, right);
return leftSum + rightSum;
}
public int queryMax(int left, int right) {
return queryMax(1, 0, n-1, left, right);
}
public int queryMax(int index, int start, int end, int left, int right) {
if (left > end || right < start) {
return 0;
} else if (left <= start && right >= end) {
return st[index].sum;
}
int mid = (start + end) / 2;
int leftIndex = index * 2;
int rightIndex = index * 2 + 1;
int leftMax = queryMax(leftIndex, start, mid, left, right);
int rightMax = queryMax(rightIndex, mid + 1, end, left, right);
return Math.max(leftMax, rightMax);
}
public int queryMin(int left, int right) {
return queryMin(1, 0, n-1, left, right);
}
public int queryMin(int index, int start, int end, int left, int right) {
if (left > end || right < start) {
return Integer.MAX_VALUE;
} else if (left <= start && right >= end) {
return st[index].sum;
}
int mid = (start + end) / 2;
int leftIndex = index * 2;
int rightIndex = index * 2 + 1;
int leftMin = queryMin(leftIndex, start, mid, left, right);
int rightMin = queryMin(rightIndex, mid + 1, end, left, right);
return Math.min(leftMin, rightMin);
}
public void update(int index, int start, int end, int updateIndex, int value) {
if (start == end) {
nums[updateIndex] = value;
st[index].sum = value;
st[index].max = value;
st[index].min = value;
return;
}
int mid = (start + end) / 2;
int leftIndex = index * 2;
int rightIndex = index * 2 + 1;
if (updateIndex >= start && updateIndex <= mid) {
update(leftIndex, start, mid, updateIndex, value);
} else {
update(rightIndex, mid + 1, end, updateIndex, value);
}
st[index].max = Math.max(st[leftIndex].max, st[index].max);
st[index].min = Math.min(st[leftIndex].min, st[index].min);
st[index].sum = st[leftIndex].sum + st[index].sum;
}
public void update(int index, int value) {
nums[index] = value;
update(1, 0, n - 1, index, value);
}
}
leetcode307 区域和检索 - 数组可修改
并不是所有求区间和都能用线段树,例如leetcode327 区间和的个数,元素的值范围是 -231<=num<= 231-1,如果直接构建线段树,空间复杂度会挤爆!