流畅的Python(七)-函数装饰器和闭包

一、核心要义

主要解释函数装饰器的工作原理,包括最简单的注册装饰器和较复杂的参数化装饰器。同时,因为装饰器的实现依赖于闭包,因此会首先介绍闭包存在的原因和工作原理。

二、代码示例

1、变量作用域规则

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2024/2/3 11:26
# @Author  : Maple
# @File    : 01-变量作用域规则.py
# @Software: PyCharm

b = 10
def f1(a):
    print(a)
    print(b)
    # b = 20 # 在函数体中给b赋值,因此会被判断为局部变量

def f1_revise(a):
    global b # 声明函数体中的b为全局变量
    print(a)
    print(b)
    b = 20

"""列表的作用域"""
students = []

def f2():
    # students指向全局变量
    students.append('a')
    return id(students)

def f3():
    # 内部再声明一个 students,其为局部变量,与外部的students不是同一个对象
    students = []
    students.append('a')
    return id(students)

def f4():
    # 声明全局变量
    global students
    students +=[1]
    # print(id(students))
    return id(students)


if __name__ == '__main__':
    # 1. f1测试
    # 说明: 1.Python在编译函数f1的定义体时,判断b为局部变量,因为在函数体中给b赋值了
    #       2.所以在调用函数f1(10)的时候,执行到print(b),发现局部变量b还没有赋值,此时就会报错
    #f1(10) # UnboundLocalError: local variable 'b' referenced before assignment

    # 2. f1_revise测试
    f1_revise(20) # 20,10
    # 全局变量b的值被修改
    print(b) # 20

    # 3.f2测试
    print(f2() == (id(students))) #True

    # 4.f3测试
    print(f3() == (id(students))) #False

    # 5.f4测试
    print(f4() == (id(students))) #True

2、闭包

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2024/2/3 11:35
# @Author  : Maple
# @File    : 02-闭包.py
# @Software: PyCharm

"""需求:计算移动平局值
       每调用一次函数,传入一个新的数值,然后和前面的所有值进行累加,再计算最后的平均值
"""

# 1. 借用数组方式实现
def make_avg():
    num_list = []
    def avg(new_value):
        num_list.append(new_value)
        total = sum(num_list)
        return total / len(num_list)
    return avg

# 2.直接使用变量方式实现:但存在一个坑
def make_avg_revise1():
    count =  0
    total = 0
    def avg(new_value):
        count += 1
        total += new_value
        return  total / count
    return avg

# 3.直接使用变量方式实现:填坑
def make_avg_revise2():
    count =  0
    total = 0
    def avg(new_value):
        nonlocal count,total # 通过nonlocal 将变量标记为`自由变量`
        count += 1
        total += new_value
        return total / count
    return avg


if __name__ == '__main__':

    print("***1. make_avg 测试**********************")
    # 1. make_avg 测试
    avg = make_avg()
    # 分析:1.按理说调用完 make_avg_revise1()返回avg1后,make_avg_revise1函数中的局部变量num_list的作用域应该消失了
    #       2.但实际上,在avg1中仍然能够调用num_list,这就是所谓闭包现象(变量的作用域外延了)
    #       3.num_list被称作`自由变量`
    print(avg(5))  # 5.0
    print(avg(10))  # 7.5
    # 查看avg1 创建和绑定的变量
    ## 1-1 创建的局部变量
    print(avg.__code__.co_varnames)  # ('new_value', 'total')
    ## 1-2 绑定的自由变量
    print(avg.__code__.co_freevars)  # ('num_list',)
    ## 自由变量num_list绑定在avg1的closure属性中:是一个cell对象
    print(avg.__closure__)  # (,)
    ## num_list的值则在cell对象中的cell_contents属性中
    print(avg.__closure__[0].cell_contents)  # [5, 10]

    print("*** 2.调用make_avg_revise1会报错**********************")
    # 2.调用make_avg_revise1会报错
    # 分析:1. 内层函数avg的变量count 和 total在函数内部赋值,因为在函数体编译的时候,会被当作局部变量,但是又没有初始化声明,所以
    #           当函数函数调用的时候,会报错
    try:
        avg = make_avg_revise1()
        print(avg(5))
    except Exception as e:
        print(e)  #local variable 'count' referenced before assignment

    print("***  3.make_avg_revise2测试**********************")
    # 3.make_avg_revise2测试
    avg2 = make_avg_revise2()
    print(avg2(5)) # 5.0
    print(avg2(10)) # 7.5

3、装饰器

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2024/2/3 16:04
# @Author  : Maple
# @File    : 03-装饰器.py
# @Software: PyCharm


def decoration(fun):
    def inner(*args):
        print("do something before decorated function being excuted")
        result = fun(*args)
        print("do something after decorated function being excuted")
        return  result
    return inner

@decoration
def add(a,b):
    return  a + b

if __name__ == '__main__':

    f = add
    # f已经变成 inner,之后调用inner本质上是在调用inner函数
    print(f) # .inner at 0x0000015424D75310>

    # f调用过程与闭包有什么关系?
    # f = add 等价于 f = decoration(add),此后再调用f, 外层函数参数add的作用域应该已经"消失"
    # 但由于闭包原理,add作为`自由变量`,仍然会被绑定在f中
    result = f(1,2)
    """
    do something before decorated function being excuted
    do something after decorated function being excuted
    """
    print(result) # 3

4、装饰器应用

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2024/2/3 16:18
# @Author  : Maple
# @File    : 04-装饰器应用.py
# @Software: PyCharm

"""利用装饰器对上一章中最优策略 部分进行改写"""


from collections import namedtuple

# 顾客具名元组
Customer = namedtuple('Customer','name fidelity')

# 定义商品类
class Item:

    def __init__(self,product,quantity,price):
        """
        :param product: 商品名称
        :param quantity: 商品数量
        :param price: 商品单价
        """
        self.product = product
        self.quantity = quantity
        self.price = price


    def totol(self):
        """
        :return:订单总费用
        """
        return self.quantity * self.price


# 定义上下文(订单类)
class Order:

    def __init__(self,customer,cart,promotion=None):
        """
        :param customer: 顾客
        :param cart: 购物车
        :param promotion: 优惠策略
        """
        self.customer = customer
        self.cart = cart
        self.promotion = promotion

    def total(self):
        """
        :return:顾客订单打折之前的总费用
        """
        if not hasattr(self,'__total'):
            self.__total = sum(item.totol() for item in self.cart)
        return self.__total

    def due(self):
        """
        :return:顾客最终支付的费用
        """
        if self.promotion is None:
            return self.total()
        return self.total() - self.promotion(self)

    def __repr__(self):
        fmt = ''
        return fmt.format(self.total(), self.due())

# 策略数组
promos = []

def promotion(func):
    # 这里的promos指向全局变量,为何不是局部变量?list是可变类型,append操作并不会生成新的对象,
    promos.append(func)
    return func



# 具体策略1:积分优惠策略
# 被promotion装饰的函数,会被append到策略数组promos中
@promotion
def FidelityPromo(order):
    """如果积分大于1000,享受15%优惠"""
    if order.customer.fidelity > 1000:
        return order.total() * 0.15
    else:
        return 0

# 具体策略2
@promotion
def BulkItemPromo(order):
    """单个商品为20个及以上时,提供10%折扣"""
    discount = 0
    for item in order.cart:
        if item.quantity >= 10:
            discount += item.totol()* 0.1
    return discount

# 具体策略3
@promotion
def LargetOrderPromo(order):
    """购物车中不同商品种类数量达到3个或以上提供7%折扣"""
    discount = 0
    # 获取购物车中所有不同的商品
    products = {item.product for item in order.cart}
    if len(products) >=3:
        discount += order.total() * 0.07
    return round(discount,2)

# 最优策略
def optimization_strategy(order):
    """
    :param order: 订单类
    :return:最优策略和最大折扣
    """
    # 手动定义所有优惠策略
    p_final =  None
    discount_final = 0
    for p in promos:
        discount = p(order)
        if discount > discount_final:
            discount_final = discount
            p_final = p
    return (p_final,discount_final)


if __name__ == '__main__':
    # 1. 最优策略示例1
    cus1 = Customer('Maple', 2000)  # 用户积分大于1000,享受15%(注意:为了测试,数值从5%调整到15%)优惠
    cart1 = [Item('banana', 20, 2.0), Item('apple', 10, 1.0)]
    o1 = Order(cus1, cart1, FidelityPromo)
    print(optimization_strategy(o1))  # (, 7.5)


    print('=====================================================')

    # 2. 最优策略示例2
    cus2 = Customer('Jack', 880)
    cart2 = [Item('Book', 30, 1.0), Item('Radio', 5, 1.0)]  # Book订单超过20个,提供10%折扣
    o2 = Order(cus2, cart2, BulkItemPromo)
    print(optimization_strategy(o2))  # (, 3.0)
    print('=====================================================')

    # 3. 最优策略示例3
    cus3 = Customer('Mick', 300)
    cart3 = [Item('Phone', 5, 2.0), Item('Water', 5, 1.0), Item('ring', 8, 2)]  # 购物车不同商品达到3个.提供7%折扣
    o3 = Order(cus3, cart3, LargetOrderPromo)
    print(optimization_strategy(o3))  # (, 2.17)

5、clock_deco

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2024/2/2 20:20
# @Author  : Maple
# @File    : 05-clock_deco.py
# @Software: PyCharm

import time
from functools import reduce
from operator import mul


def clock(func):
    """clock装饰器"""
    def clocked(*args):
        start = time.perf_counter()
        result = func(*args)
        end = time.perf_counter()
        time_takes =  end = start
        arg_str = ','.join([repr(arg) for arg in args])
        print('[%0.8fs] %s(%s) -> %s' % (time_takes,func.__name__,arg_str,result))
        return result

    return clocked

@clock
def f1(n):
    return reduce(mul,range(1,n+1))

if __name__ == '__main__':

    # clock装饰器测试
    print(f1(5))
    """[0.02694280s] f1(5) -> 120
       120
    """

6、使用functools.lur_cache做缓存

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2024/2/2 20:56
# @Author  : Maple
# @File    : 06-使用functools.lur_cache做备忘.py
# @Software: PyCharm


from clock_deco import clock
import functools

# 如果不使用lur_cache
# @clock
# def fibonacci(n):
#     if n < 2:
#         return n
#     return fibonacci(n-2) + fibonacci(n-1)


# 使用lru_cache
@functools.lru_cache()
@clock
def fibonacci(n):
    if n < 2:
        return n
    return fibonacci(n-2) + fibonacci(n-1)




if __name__ == '__main__':

    #1.原生fibonacci测试
    """打印结果
    [0.02825890s] fibonacci(0) -> 0
    [0.02828490s] fibonacci(1) -> 1
    [0.02825830s] fibonacci(2) -> 1
    [0.02829540s] fibonacci(1) -> 1
    [0.02830080s] fibonacci(0) -> 0
    [0.02830610s] fibonacci(1) -> 1
    [0.02830040s] fibonacci(2) -> 1
    [0.02829520s] fibonacci(3) -> 2
    [0.02825730s] fibonacci(4) -> 3
    3
    """
    # print(fibonacci(4))

    #2.使用lru_cache测试
    """打印结果
	[0.02470590s] fibonacci(0) -> 0
    [0.02472680s] fibonacci(1) -> 1
    [0.02470550s] fibonacci(2) -> 1
    [0.02473770s] fibonacci(3) -> 2
    [0.02470470s] fibonacci(4) -> 3
    
    结果说明:
    (1)n的每个值都只调用一次
    (2)这是因为fibonacci(n)的值会被缓存起来,下次用到的时候可以直接从缓存获取结果,而不用再重新计算
    """
    print(fibonacci(4))

补充说明原生fibonacci测试结果

流畅的Python(七)-函数装饰器和闭包_第1张图片

7、单分派泛函数

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2024/2/3 9:56
# @Author  : Maple
# @File    : 07-单分派泛函数-1.py
# @Software: PyCharm
from collections import abc
import html
import numbers
from functools import singledispatch


def html_parse(obj):
    """生成Html,返回不同类型的Python对象
    :param obj: Python对象
    :return: html
    """
    content = html.escape(repr(obj))
    return '
{}
'.format(content) @singledispatch def html_parse_enhance(obj): """ 针对不同的Python对象,以自定义的方式显示 1. str: 把内部的换行符替换为'
\n';不适用
,而是使用

2. int: 以十进制和十六进制显示数字,示例:

42 (0x2a)
3. list:输出一个html列表,根据各个元素的类型进行格式化。示例:html_parse_enhance(['maple',42,{1,23}]),输出->
  • maple

  • 42 (0x2a)
  • {123}
  • :param obj:Python对象 :return:html """ content = html.escape(repr(obj)) return '
    {}
    '.format(content) @html_parse_enhance.register(str) def _(text): """对于str类型:把内部的换行符替换为'
    \n';不适用
    ,而是使用

    """ content = html.escape(text).replace('\n','
    \n') return '

    {}

    '.format(content) @html_parse_enhance.register(numbers.Integral) def _(n): """对于整数类型: 以十进制和十六进制显示数字,示例:
    42 (0x2a)
    """ return '
    {0} (0x{0:x})
    '.format(n) @html_parse_enhance.register(tuple) @html_parse_enhance.register(abc.MutableSequence) def _(seq): """对于list类型: 输出一个html列表,根据各个元素的类型进行格式化""" content = '
  • \n
  • '.join([html_parse_enhance(obj) for obj in seq]) return '
      \n
    • {}
    • \n
    '.format(content) if __name__ == '__main__': # 1.集合对象测试 r1 = html_parse({1,2,3}) print(r1) #
    {1, 2, 3}
    r1_eh = html_parse_enhance({1,2,3}) print(r1_eh) #
    {1, 2, 3}
    # 2.函数对象测试 print('******2.函数对象测试*******************') r2 = html_parse(abs) print(r2) #
    <built-in function abs>
    r2_eh = html_parse_enhance(abs) print(r2_eh) #
    <built-in function abs>
    # 3.包含换行符\n的字符串测试 print('******3.包含换行符\n的字符串测试*******************') r3 = html_parse('maple \n abc') print(r3) #
    'maple \n abc'
    r3_eh = html_parse_enhance('maple \n abc') """

    maple
    abc

    """ print(r3_eh) # 4.整数测试 print('******4.整数测试*******************') r4 = html_parse(42) print(r4) #
    42
    r4_eh = html_parse_enhance(42) #
    42 (0x2a)
    print(r4_eh) # 5.列表对象测试 print('******5.列表对象测试*******************') r5 = html_parse(['maple',33,{1,2,3}]) print(r5) #
    [1, 2, 3]
    r5_eh = html_parse_enhance(['maple',33,{1,2,3}]) """
    • maple

    • 33 (0x21)
    • {1, 2, 3}
    """ print(r5_eh)

8、装饰器工厂函数

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2024/2/3 16:47
# @Author  : Maple
# @File    : 08-装饰器工厂函数.py
# @Software: PyCharm
import time
from functools import reduce
from operator import mul


registry = set()

# 定义一个装饰器工厂函数:注册或取消被装饰函数
def register(active=True):
    def decorate(func):
        print('running register(active = %s) ——> decorate(%s)'  %(active,func))
        if active:
            registry.add(func)
        else:
            registry.discard(func)
        return func
    return decorate


# 注意:装饰器工厂函数 并不是装饰器,必须作为函数调用,即后面要加(),即使不传参数
# 在f1上加上@register()后,模块加载的时候就会自动执行register里面的代码了
@register()
def f1(n):
    return reduce(mul,range(1,n+1))

@register(active=False)
def f2():
    pass

def f3():
    pass

if __name__ == '__main__':

    # 1. 模块加载的时候,就会执行register里面的代码
    # 因此会输出:
    """
    running register(active = True) ——> decorate()
    running register(active = False) ——> decorate()
    """
    # 2.查看registry的值: 当前只有函数f1注册了
    print(registry) # {}

    # 3.f3上并没有加@register,如何手动注册呢?
    register(active=True)(f3) # running register(active = True) ——> decorate()

    # 再次查看registry:f3也被注册
    print(registry) # {, }

9、参数化clock装饰器

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2024/2/3 17:16
# @Author  : Maple
# @File    : 09-参数化clock装饰器.py
# @Software: PyCharm
import time
from functools import reduce
from operator import mul

DEFAULT_FOTMAT = '[{time_takes:0.8f}s] {name}({arg_str}) -> {result}'

def clock(fmt = DEFAULT_FOTMAT):
    def decorate(func):
        """clock装饰器"""
        def clocked(*args):
            start = time.perf_counter()
            result = func(*args)
            end = time.perf_counter()
            time_takes =  end - start
            name = func.__name__
            arg_str = ','.join([repr(arg) for arg in args])
            # *locals是获取clocked中的局部变量:name,arg_str等
            print(fmt.format(**locals()))
            return result
        return clocked
    return decorate


@clock()
def f1(n):
    return reduce(mul,range(1,n+1))

@clock('{name}({arg_str}): {result}')
def f2(n):
    return reduce(mul,range(1,n+1))


@clock('fun_name:{name};time_takes:{time_takes}')
def f3(n):
    return reduce(mul,range(1,n+1))


if __name__ == '__main__':
    # f1指向clocked函数
    f = f1
    print(f) #.decorate..clocked at 0x000001DD7193C4C0>

    # 1. 默认格式测试
    f1(4) # [0.00000460s] f1(4) -> 24

    #2.自定义格式1测试
    f2(4) # f2(4): 24

    #3.自定义格式3测试
    f3(4) # fun_name:f3;time_takes:8.000000000021878e-07

你可能感兴趣的:(Python,python,开发语言)