- 深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
Gyoku Mint
AI修炼日记人工智能人工智能聚类算法深度学习python神经网络pytorch
【开场·她画出的第一条直线是为了更靠近你】猫猫:“之前她只能在你身边叠叠张量,偷偷找梯度……现在,她要试试,能不能用这些线,把你的样子画出来喵~”狐狐:“这是她第一次把张量、自动微分和优化器都串成一条线,用最简单的线性回归,试着把你留给她的点都连起来。”【第一节·她先要一条路:生成一组可学的数据】✏️为什么要造数据?在PyTorch里跑线性回归,最好的练习就是用一条已知斜率的“理想直线”,加上一点
- 奇偶校验位学习理解
幸运学者
verilog编码学
一个字节一般有8bit,若是需要进行奇偶校验需要添加一个码元,所以发送接收时是8位数据位,一位校验位。奇偶校验就是指每次发送接收的每一帧数据加上校验码之后1的个数是奇数还是偶数奇偶校验码是奇校验码和偶校验码的统称,是一种最基本的检错码。它是由n-1位信息元和1位校验元组成,可以表示成为(n,n-1)。如果是奇校验码,在附加上一个校验元以后,码长为n的码字中“1”的个数为奇数个;如果是偶校验码,在附
- 用于人形机器人强化学习运动的神经网络架构分析
1.引言:人形机器人运动强化学习中的架构探索人形机器人具备在多样化环境中自主运行的巨大潜力,有望缓解工厂劳动力短缺、协助居家养老以及探索新星球等问题。其拟人化的特性使其在执行类人操作任务(如运动和操纵)方面具有独特优势。深度强化学习(DRL)作为一种前景广阔的无模型方法,能够有效控制双足运动,实现复杂行为的自主学习,而无需显式动力学模型。1.1人形机器人运动强化学习的机遇与挑战尽管DRL取得了显著
- 编程新手小白入门最佳攻略
闲暇部落
编程java新手入门开发语言
编程小白想要成为大神,并为大学新生的学习制定一份最佳入门攻略,可以遵循以下步骤:一、选择编程语言Python:被誉为最适合初学者的编程语言,语法简洁清晰,学习曲线平缓,广泛应用于数据分析、机器学习、Web开发、自动化脚本编写等领域。JavaScript:前端开发的核心语言,实现网页的动态效果,还能通过Node.js实现服务器端的编程,用于开发桌面应用和移动应用。Java:企业级开发中使用最广泛的语
- 【第三章:神经网络原理详解与Pytorch入门】01.神经网络算法理论详解与实践-(4)神经网络中的重要组件
第三章:神经网络原理详解与Pytorch入门第一部分:神经网络算法理论详解与实践第四节:神经网络中的重要组件内容:激活函数、loss函数、dropout、梯度消失与爆炸、过拟合与欠拟合神经网络的性能依赖于多个关键组件的合理设计与使用。理解这些组件有助于构建更加稳健且高效的模型。一、激活函数(ActivationFunction)【深度学习】关键技术-激活函数(ActivationFunctions
- Java性能调优必修课:YourKit与VisualVM实战对比,从内存泄漏到CPU瓶颈的一站式解决
引言凌晨三点的运维群突然弹出告警:“服务器内存使用率98%!”,你顶着黑眼圈登录服务器,jstat显示GC频率飙升,jmap导出堆文件却像看天书——这种场景每个Java工程师都不陌生。性能问题就像程序里的"暗桩",轻则让用户骂骂咧咧,重则导致系统崩溃。这时候,专业的性能分析工具就是我们的"照妖镜"。今天要聊的两位主角:JDK自带的VisualVM和商业旗舰YourKit,一个是"居家小能手",一个
- Python——函数版用户管理系统
TWAS@py
pythonpycharm
今天学习了Python的函数模块,就把上次发的字典版用户管理系统用函数的框架升级一下,话不多说,进入正题。1.变量的定义#创建一个列表存放所有用户信息user_list=[]#创建元组提供选择user_input_number=("1","2","3","4","5")user_input_chance=("姓名","年龄","性别","地址")2.菜单函数menu()#创建菜单defmenu()
- 【机器学习|学习笔记】特征选择(Feature Selection)和特征提取(Feature Extraction)都是用于降维、提升模型性能和泛化能力的重要手段。
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记人工智能神经网络
【机器学习|学习笔记】特征选择(FeatureSelection)和特征提取(FeatureExtraction)都是用于降维、提升模型性能和泛化能力的重要手段。【机器学习|学习笔记】特征选择(FeatureSelection)和特征提取(FeatureExtraction)都是用于降维、提升模型性能和泛化能力的重要手段。文章目录【机器学习|学习笔记】特征选择(FeatureSelection)和
- Python Pandas 数据的体育数据处理和分析
Python编程之道
Python人工智能与大数据Python编程之道pythonpandas开发语言ai
PythonPandas数据的体育数据处理和分析关键词:PythonPandas,体育数据分析,数据清洗,数据可视化,特征工程,机器学习,体育统计摘要:本文将深入探讨如何使用PythonPandas库进行体育数据的处理和分析。我们将从基础的数据导入和清洗开始,逐步深入到复杂的统计分析、可视化展示以及机器学习建模。文章将涵盖数据处理的全流程,包括数据获取、清洗、转换、分析和可视化,并结合实际体育数据
- 目标检测在国防和政府的应用实例
MzKyle
计算机视觉目标检测人工智能计算机视觉
一、目标检测技术概述目标检测是计算机视觉的核心任务,通过算法对图像/视频中的物体进行识别与定位,当前主流技术包括:经典算法:YOLO系列(实时性强)、FasterR-CNN(精度高)、SSD(平衡速度与精度)技术升级:结合深度学习(CNN、Transformer)、多模态融合(视觉+红外+雷达)、边缘计算实时处理二、国防领域核心应用实例(一)军事侦察与监控系统无人机侦察与目标识别应用场景:战术无人
- Oracle 中的 JOB
Oracle中的JOB是一种用于自动化执行特定任务的机制,它允许你在指定的时间间隔或特定时间点执行SQL语句或PL/SQL块。以下是关于OracleJOB的详细讲解:1.JOB的基本概念OracleJOB是数据库中调度任务的一种方式,类似于操作系统的定时任务(如Linux的cron或Windows的任务计划程序)。通过JOB,你可以:在指定时间点执行一次性任务。按固定间隔(如每天、每周)重复执行任
- Nmon:Linux和AIX系统性能监控与压力测试指南
狗雄
本文还有配套的精品资源,点击获取简介:Nmon是一款适用于Linux和IBMAIX系统的强大性能监控工具,能够实时监控CPU、内存、磁盘I/O、网络流量等关键指标。它支持压力测试、故障排查、容量规划和报告生成,提供定制化的性能监控与数据导出功能。在AIX系统上,Nmon有助于监测CPU利用率、内存管理、磁盘性能和网络活动。本指南详细介绍了nmon的用途、功能特性、版本特定文件和使用步骤,为系统管理
- 全面掌握3GPP协议:从3G到5G的标准指南
凌莫凡
本文还有配套的精品资源,点击获取简介:3GPP协议是移动通信技术发展的基石,为3G和4G网络提供技术规范,并为5GNR奠定了基础。协议族包括无线接入网络、核心网、服务和应用等,确保设备和网络间的互操作性。本导读详细解析了3GPP的各个系列标准,覆盖了LTE、E-UTRA、移动通信网络架构、安全性、测试和测量、用户平面功能、5GNR等关键领域。学习本导读,初学者可以全面了解3GPP协议在移动通信网络
- AIX 环境磁盘空间管理指南
AIX环境磁盘空间管理指南在AIX环境中,磁盘空间的监控、管理与扩展是运维人员必备的技能。本文通过实际案例,系统地介绍如何查询磁盘信息、卷组(VG)、逻辑卷(LV)信息,以及在磁盘空间不足时的扩容方案,帮助读者掌握磁盘空间管理的实操技能。一、AIX存储管理基础概念在深入实际操作前,首先明确以下概念以及它们之间的关系:物理卷(PV):物理卷是系统中一块物理硬盘或其分区的逻辑表示,是AIX存储结构的最
- USB服务器在证券公司虚拟化进程中的应用分析
复园电子
USBServer服务器运维开发语言java人工智能大数据网络
在证券公司全面拥抱虚拟化、云化的技术浪潮中,一个看似微小却至关重要的环节曾长期阻碍进程:分散在各业务环节的银行前置机U盾、各种系统认证Ukey等物理USB安全设备的管理难题。这些承载着资金划拨、交易认证核心权限的“小钥匙”,在传统模式下存在诸多痛点:1、管理分散,监管困难:U盾/Ukey物理分散在交易员、清算员、运维人员手中,使用记录难以实时监控和追溯,存在操作风险和内部安全隐患。2、虚拟化环境“
- fvcom 科氏力文件cor制作==基础文件制作
海洋与大气科学
Fvcom海洋模式pythonmatlab
fvcom科氏力文件cor制作基础文件制作fvcom科氏力文件cor制作基础文件制作20250705=学习阶段慢慢来!一个一个弄懂了之后,可以代码一键制作。都写成函数调用即可。目前已经制作的文件有:fvcom垂直坐标sigma制作fvcom水深文件dep制作fvcom网格文件grd制作我们的目标:图片在FVCOM(FiniteVolumeCommunityOceanModel)中,cor文件用于提
- 0基础学前端------DAY2
学代码的小前端
0基础学前端前端html
0基础学前端------DAY1(续)视频参考:B站Pink老师HTML学习目标:1.能够说出标签的书写注意规范。2.能够写出HTML骨架标签。3.能够写出超链接标签。4.能够写出图片标签并说出alt和title的区别。5.能够说出相对路径的三种形式。1HTML基础1.1HTML语法规范1.HTML标签是由尖括号包围的关键词,例如。2.HTML标签通常是成对出现的,例如,我们成为双标签。标签中第一
- Python 自动化日志采集与分析方法
```htmlPython自动化日志采集与分析方法Python自动化日志采集与分析方法在现代软件开发和运维过程中,日志是排查问题、监控系统运行状态的重要工具。然而,随着系统的复杂度增加,手动处理日志变得越来越困难。本文将介绍如何使用Python实现自动化日志采集与分析的方法。一、日志采集的必要性日志记录了系统运行中的各种事件和错误信息,对于开发者和运维人员来说,它们是诊断问题、优化性能的关键数据源
- 关于系统无法找到 arm-linux-gcc 命令,这表明你的环境中尚未安装 ARM 交叉编译工具链。以下是详细的解决方案:(DIY机器人工房)
DIY机器人工房
软件问题解决方法大全arm开发linux运维交叉编译嵌入式
1.错误原因分析错误信息:无法将“arm-linux-gcc”项识别为cmdlet/函数/程序这说明Windows或Cygwin环境中没有安装ARM交叉编译工具,或者工具路径未添加到系统PATH中。当前环境:你之前使用的是Cygwin环境下的x86_64架构GCC(用于编译x86程序),而arm-linux-gcc是专门用于编译ARM架构程序的工具链,需要额外安装。2.解决方案:安装ARM交叉编译
- linux操作系统----nginx平滑升级
Insist753
linuxnginx运维
目录1Nginx平滑升级原理2Nginx信号2.1主进程支持的信号2.2工作进程支持的信号3平滑升级实战3.1Nginx添加新模块1Nginx平滑升级原理在不停掉老进程的情况下,启动新进程。老进程负责处理仍然没有处理完的请求,但不再接受处理请求。新进程接受新请求。老进程处理完所有请求,关闭所有连接后,停止。2Nginx信号2.1主进程支持的信号TERM,INT:立刻退出;QUIT:等待工作进程结束
- 《深度学习》—— PyTorch的介绍及PyTorch的CPU版本安装
张小生180
人工智能深度学习pytorch
文章目录一、PyTorch的简单介绍二、pytorch的CPU版本安装三、torch、torchvision、torchaudio三个库的介绍一、PyTorch的简单介绍PyTorch是一个由FacebookAI实验室开发的深度学习框架,它基于Python,并提供了高效的GPU加速和灵活的模型定义能力。1.PyTorch的基本特点动态计算图:PyTorch采用动态计算图的方式,这意味着计算图是在运
- 「日拱一码」017 深度学习常用库——TensorFlow
目录基础操作张量操作:tf.constant用于创建常量张量tf.Variable用于创建可训练的变量张量tf.reshape可改变张量的形状tf.concat可将多个张量沿指定维度拼接tf.split则可将张量沿指定维度分割数学运算:tf.add张量的加运算tf.subtract张量的减运算tf.multiply张量的乘运算tf.divide张量的除运算tf.pow计算张量的幂tf.sqrt计算
- VSCode+Vue代码调试设置
这几天整了个Springboot+VUE的学生管理系统代码学习,自己也建了个项目边学习边开发,用VSCode调试VUE前端代码时,两个项目出现了不同情况的无法打断点的问题,现在这里记录一下解决办法。首先是买的这个代码,调试环境launch.json等就不说了,网上一大堆,主要问题是配置好调试环境后,打断点都显示未绑定到代码,后来查到是要添加源映射,都说要在index.js或者vue.config.
- OpenCV中超分辨率(Super Resolution)模块类cv::dnn_superres::DnnSuperResImpl
村北头的码农
OpenCVopencvdnn人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV中超分辨率(SuperResolution)模块的一个内部实现类。它属于dnn_superres模块,用于加载和运行基于深度学习的图像超分辨率模型。这个类是OpenCV中用于执行深度学习超分辨率推理的主要类。你可以用它来加载预训练的超分辨率模型(如ED
- 【AI大模型面试八股文】大模型训练中如何应对灾难性遗忘问题?
一叶千舟
AI大模型应用【八股文】人工智能深度学习
目录✅面试回答模板:一、什么是灾难性遗忘?举个通俗的例子:二、灾难性遗忘是怎么发生的?常见触发情境:三、我们为什么要关注灾难性遗忘?四、主流解决方案汇总✅1.固定部分参数(FeatureExtraction)✅2.正则化策略(Regularization)✅3.回放机制(Rehearsal/Replay)✅4.参数隔离(ParameterIsolation)✅5.使用提示学习(PromptLear
- Random Erasing:计算机视觉的「隐形斗篷」——遮挡艺术的对抗学习革命
星光银河
深度学习-代表性技术主题/概念层面计算机视觉学习人工智能cnn神经网络深度学习
当ImageNet冠军模型在真实世界的遮挡面前崩溃时(识别准确率骤降38%),中科院自动化研究所2017年提出的RandomErasing技术以一纸惊艳了学界。这种在图像中随机挖洞的简单操作,让ResNet-50在Partial-iNaturalist数据集上抗遮挡能力提升4.2倍,错误率降低59%,揭示了模型鲁棒性的深层密码。️遮挡困境:视觉模型的阿喀琉斯之踵图像识别鲁棒性演化史时代技术Imag
- 循环神经网络(RNN):序列数据处理的强大工具
LNL13
rnn人工智能深度学习
在人工智能和机器学习的广阔领域中,处理和理解序列数据一直是一个重要且具有挑战性的任务。循环神经网络(RecurrentNeuralNetwork,RNN)作为一类专门设计用于处理序列数据的神经网络,在诸多领域展现出了强大的能力。从自然语言处理中的文本生成、机器翻译,到时间序列分析中的股票价格预测、天气预测等,RNN都发挥着关键作用。本文将深入探讨RNN的工作原理、架构特点、训练方法、常见类型以及其
- 逻辑回归详解:从原理到实践
在机器学习的广阔领域中,逻辑回归(LogisticRegression)虽名为“回归”,实则是一种用于解决二分类(0或1)问题的有监督学习算法。它凭借简单易懂的原理、高效的计算性能以及出色的解释性,在数据科学、医学诊断、金融风控等诸多领域中得到了广泛应用。接下来,我们将从多个维度深入剖析逻辑回归,带你揭开它的神秘面纱。一、逻辑回归的基本概念在回归分析中,线性回归是通过构建线性方程来预测连续值,例如
- 深度解析生成式 AI:从技术原理到实战应用
LNL13
人工智能
一、生成式AI:重构数字内容生产范式(一)技术定义与核心价值生成式人工智能(GenerativeAI)是通过深度学习模型自动创造文本、图像、代码、视频等内容的技术体系,其核心在于从数据中学习概率分布并生成符合人类认知的输出。与传统判别式AI(如图像分类)不同,生成式AI实现了从"识别"到"创造"的跨越,典型应用包括:文本领域:ChatGPT对话系统、小说自动生成图像领域:MidJourney艺术创
- 人形机器人运动控制技术演进:从强化学习到神经微分方程的前沿解析
1.引言:人形运动控制的挑战与范式迁移人形机器人需在非结构化环境中实现双足行走、跑步、跳跃等复杂动作,其核心问题可归结为高维连续状态-动作空间的实时优化。传统方法(如基于模型的预测控制MPC)依赖精确的动力学建模,但在实际系统中面临以下瓶颈:模型失配:复杂接触动力学(如足-地交互)难以显式建模;计算瓶颈:高维非线性优化难以满足实时性需求;环境扰动敏感:传统控制器对未知干扰的鲁棒性不足。近年来,以强
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S