上一篇文章中,讲解了MySQL进阶45讲【15】“order by“是怎么工作的?order by语句的几种执行模式。今天这篇文章,从性能问题说起,和大家说说MySQL中的另外一种排序需求,希望能够加深MySQL排序逻辑的理解。
假设一个英语学习App首页有一个随机显示单词的功能,也就是根据每个用户的级别有一个单词表,然后这个用户每次访问首页的时候,都会随机滚动显示三个单词。他们发现随着单词表变大,选单词这个逻辑变得越来越慢,甚至影响到了首页的打开速度。
现在,如果设计这个SQL语句,大家会怎么写呢?
为了便于理解,对这个例子进行了简化:去掉每个级别的用户都有一个对应的单词表这个逻辑,直接就是从一个单词表中随机选出三个单词。这个表的建表语句和初始数据的命令如下:
mysql> CREATE TABLE `words` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`word` varchar(64) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
delimiter ;;
create procedure idata()
begin
declare i int;
set i=0;
while i<10000 do
insert into words(word) values(concat(char(97+(i div 1000)), char(97+(i % 1000 div 100)), char(97+(i % 10000 div 100))));
set i=i+1;
end while;
end;;
delimiter ;
call idata();
为了便于量化说明,在这个表里面插入了10000行记录。接下来,我们就一起看看要随机选择3个单词,有什么方法实现,存在什么问题以及如何改进。
首先,可以用order by rand()来实现这个逻辑。
mysql> select word from words order by rand() limit 3;
这个语句的意思很直白,随机排序取前3个。虽然这个SQL语句写法很简单,但执行流程却有点复杂的。
我们先用explain命令来看看这个语句的执行情况。
Extra字段显示Using temporary,表示的是需要使用临时表;Using filesort,表示的是需要执行排序操作。
因此这个Extra的意思就是,需要临时表,并且需要在临时表上排序。
这里,可以先回顾一下上一篇文章中全字段排序和rowid排序的内容。把上一篇文章的两个流程图贴过来,方便复习。
然后,问一个问题,对于临时内存表的排序来说,它会选择哪一种算法呢?回顾一下上一篇文章的一个结论:对于InnoDB表来说,执行全字段排序会减少磁盘访问,因此会被优先选择。
强调的是“InnoDB表”,所以大家肯定想到:对于内存表,回表过程只是简单地根据数据行的位置,直接访问内存得到数据,根本不会导致多访问磁盘。优化器没有了这一层顾虑,那么它会优先考虑的,就是用于排序的行越少越好了,所以,MySQL这时就会选择rowid排序。
理解了这个算法选择的逻辑,我们再来看看语句的执行流程。同时,通过今天的这个例子,我们来尝试分析一下语句的扫描行数。这条语句的执行流程是这样的:
接下来,我们通过慢查询日志(slowlog)来验证一下我们分析得到的扫描行数是否正确。
# Query_time: 0.900376 Lock_time: 0.000347 Rows_sent: 3 Rows_examined: 20003
SET timestamp=1541402277;
select word from words order by rand() limit 3;
其中,Rows_examined:20003就表示这个语句执行过程中扫描了20003行,也就验证了我们分析得出的结论。
现在,把完整的排序执行流程图画出来。
图中的pos就是位置信息,这里的“位置信息”是个什么概念?在上一篇文章中,我们对InnoDB表排序的时候,明明用的还是ID字段。这时候,我们就要回到一个基本概念:MySQL的表是用什么方法来定位“一行数据”的。
如果把一个InnoDB表的主键删掉,是不是就没有主键,就没办法回表了吗?
其实不是的。如果创建的表没有主键,或者把一个表的主键删掉了,那么InnoDB会自己生成一个长度为6字节的rowid来作为主键。
这也就是排序模式里面,rowid名字的来历。实际上它表示的是:每个引擎用来唯一标识数据行的信息。
对于有主键的InnoDB表来说,这个rowid就是主键ID;
对于没有主键的InnoDB表来说,这个rowid就是由系统生成的;
MEMORY引擎不是索引组织表。在这个例子里面,可以认为它就是一个数组。因此,这个rowid其实就是数组的下标。
到这里,小结一下:order by rand()使用了内存临时表,内存临时表排序的时候使用了rowid排序方法。
那么,是不是所有的临时表都是内存表呢?
其实不是的。tmp_table_size这个配置限制了内存临时表的大小,默认值是16M。如果临时表大小超过了tmp_table_size,那么内存临时表就会转成磁盘临时表。
磁盘临时表使用的引擎默认是InnoDB,是由参数internal_tmp_disk_storage_engine控制的。
当使用磁盘临时表的时候,对应的就是一个没有显式索引的InnoDB表的排序过程。
为了复现这个过程,把tmp_table_size设置成1024,把sort_buffer_size设置成 32768, 把max_length_for_sort_data 设置成16。
set tmp_table_size=1024;
set sort_buffer_size=32768;
set max_length_for_sort_data=16;
/* 打开 optimizer_trace,只对本线程有效 */
SET optimizer_trace='enabled=on';
/* 执行语句 */
select word from words order by rand() limit 3;
/* 查看 OPTIMIZER_TRACE 输出 */
SELECT * FROM `information_schema`.`OPTIMIZER_TRACE`;
然后,我们来看一下这次OPTIMIZER_TRACE的结果。
因为将max_length_for_sort_data设置成16,小于word字段的长度定义,所以我们看到sort_mode里面显示的是rowid排序,这个是符合预期的,参与排序的是随机值R字段和rowid字段组成的行。
这个时候大家可能发现不对。R字段存放的随机值就8个字节,rowid是6个字节(至于为什么是6字节,大家自行思考),数据总行数是10000,这样算出来就有140000字节,超过了sort_buffer_size 定义的 32768字节了。但是,number_of_tmp_files的值居然是0,难道不需要用临时文件吗?
这个SQL语句的排序确实没有用到临时文件,采用是MySQL 5.6版本引入的一个新的排序算法,即:优先队列排序算法。接下来,我们就看看为什么没有使用临时文件的算法,也就是归并排序算法,而是采用了优先队列排序算法。
其实,我们现在的SQL语句,只需要取R值最小的3个rowid。但是,如果使用归并排序算法的话,虽然最终也能得到前3个值,但是这个算法结束后,已经将10000行数据都排好序了。
也就是说,后面的9997行也是有序的了。但,我们的查询并不需要这些数据是有序的。所以,想一下就明白了,这浪费了非常多的计算量。而优先队列算法,就可以精确地只得到三个最小值,执行流程如下:
这里简单画了一个优先队列排序过程的示意图。
上图是模拟6个(R,rowid)行,通过优先队列排序找到最小的三个R值的行的过程。整个排序过程中,为了最快地拿到当前堆的最大值,总是保持最大值在堆顶,因此这是一个最大堆。
上上张图的OPTIMIZER_TRACE结果中,filesort_priority_queue_optimization这个部分的chosen=true,就表示使用了优先队列排序算法,这个过程不需要临时文件,因此对应的number_of_tmp_files是0。
这个流程结束后,我们构造的堆里面,就是这个10000行里面R值最小的三行。然后,依次把它们的rowid取出来,去临时表里面拿到word字段,这个过程就跟上一篇文章的rowid排序的过程一样了。
我们再看一下上面一篇文章的SQL查询语句:
select city,name,age from t where city='杭州' order by name limit 1000 ;
这里也用到了limit,为什么没用优先队列排序算法呢?原因是,这条SQL语句是limit 1000,如果使用优先队列算法的话,需要维护的堆的大小就是1000行的(name,rowid),超过了设置的sort_buffer_size大小,所以只能使用归并排序算法。
总之,不论是使用哪种类型的临时表,order by rand()这种写法都会让计算过程非常复杂,需要大量的扫描行数,因此排序过程的资源消耗也会很大。
再回到我们文章开头的问题,怎么正确地随机排序呢?
我们先把问题简化一下,如果只随机选择1个word值,可以怎么做呢?思路上是这样的:
我们把这个算法,暂时称作随机算法1。下面是执行语句的序列:
mysql> select max(id),min(id) into @M,@N from t ;
set @X= floor((@M-@N+1)*rand() + @N);
select * from t where id >= @X limit 1;
这个方法效率很高,因为取max(id)和min(id)都是不需要扫描索引的,而第三步的select也可以用索引快速定位,可以认为就只扫描了3行。但实际上,这个算法本身并不严格满足题目的随机要求,因为ID中间可能有空洞,因此选择不同行的概率不一样,不是真正的随机。
比如有4个id,分别是1、2、4、5,如果按照上面的方法,那么取到 id=4的这一行的概率是取得其他行概率的两倍。
如果这四行的id分别是1、2、40000、40001呢?这个算法基本就能当bug来看待了。所以,为了得到严格随机的结果,可以用下面这个流程:
我们把这个算法,称为随机算法2。下面这段代码,就是上面流程的执行语句的序列。
mysql> select count(*) into @C from t;
set @Y = floor(@C * rand());
set @sql = concat("select * from t limit ", @Y, ",1");
prepare stmt from @sql;
execute stmt;
DEALLOCATE prepare stmt;
由于limit 后面的参数不能直接跟变量,所以在上面的代码中使用了prepare+execute的方法。也可以把拼接SQL语句的方法写在应用程序中,会更简单些。
这个随机算法2,解决了算法1里面明显的概率不均匀问题。
MySQL处理limit Y,1 的做法就是按顺序一个一个地读出来,丢掉前Y个,然后把下一个记录作为返回结果,因此这一步需要扫描Y+1行。再加上,第一步扫描的C行,总共需要扫描C+Y+1行,执行代价比随机算法1的代价要高。
当然,随机算法2跟直接order by rand()比起来,执行代价还是小很多的。
如果按照这个表有10000行来计算的话,C=10000,要是随机到比较大的Y值,那扫描行数也跟20000差不多了,接近order by rand()的扫描行数,为什么说随机算法2的代价要小很多呢?这个大家可以自行去查阅
现在,我们再看看,如果我们按照随机算法2的思路,要随机取3个word值呢?可以这么做:
我们把这个算法,称作随机算法3。下面这段代码,就是上面流程的执行语句的序列
mysql> select count(*) into @C from t;
set @Y1 = floor(@C * rand());
set @Y2 = floor(@C * rand());
set @Y3 = floor(@C * rand());
select * from t limit @Y1,1; //在应用代码里面取Y1、Y2、Y3值,拼出SQL后执行
select * from t limit @Y2,1;
select * from t limit @Y3,1;
本篇文章主要介绍了MySQL对临时表排序的执行过程。
如果直接使用order by rand(),这个语句需要Using temporary和 Using filesort,查询的执行代价往往是比较大的。所以,在设计的时候要量避开这种写法。
今天的例子里面,我们不是仅仅在数据库内部解决问题,还会让应用代码配合拼接SQL语句。在实际应用的过程中,比较规范的用法就是:尽量将业务逻辑写在业务代码中,让数据库只做“读写数据”的事情。因此,这类方法的应用还是比较广泛的。