- 2025年中总结
Just Jump
人生经历思考反思认知方法2025年中总结
2025年中总结。一如往年惯例,总结近半年工作中的体悟和经验。一、把大而难的事拆解成小而具体的小目标。专注解决小目标,每周迭代交付,先完成再完善。1.1把大任务拆解成具体可执行的小目标2025年5月起我开始做大模型相关的技术调研、技术升级和开发工作。传统的机器学习、深度学习算法和大模型的算法在技术知识上还是有很大的差异的。想要快速转型使用大模型做开发、训练,是需要些时间和精力投入的,这并不是一个简
- 充电桩 APP 开发:技术架构与核心功能
一品威客网
架构
随着新能源汽车的普及,充电桩APP成为连接用户与充电设施的关键枢纽。这类APP的开发需兼顾用户体验与运营效率,以下从技术实现与功能设计两方面展开分析。技术架构设计实时数据交互:采用MQTT协议实现充电桩状态(空闲/充电中/故障)的实时推送,确保用户获取最新信息。定位与地图服务:集成高德/Baidu地图SDK,通过POI搜索与路径规划算法,优化充电桩位置展示与导航体验。支付系统:对接微信/支付宝支付
- 华为eNSP实战:企业级网络架构设计与仿真全攻略
一、eNSP核心功能解析与行业应用1.1eNSP在ICT行业的关键地位华为eNSP(EnterpriseNetworkSimulationPlatform)作为业界领先的网络仿真工具,已广泛应用于:华为认证体系:HCIA/HCIP/HCIE认证的标准化实验平台企业网络规划:Fortune500强中78%的企业采用eNSP进行方案验证高校教学:全球600+所高校网络工程课程指定实验环境1.2典型应用
- 从零到云:我在达内一年的Linux云计算培训之旅
博客简介本篇博文中,我将从学员身份去分享过去一年里在达内教育培训有关Linux云计算的学习经历和收获,旨在为那些渴望踏入云计算领域的初学者提供一份指南参考,同时也尝试把笔记内容进行整理输出并分享给大家。无论你是刚接触IT的新手,还是希望通过报名培训机构转型的职场人,希望这份笔记能为你揭示关于培训机构里的Linux云计算基础知识和实践技巧。大纲概览培训笔记将按照机构课程顺序由简入深进行分享,总共分为
- NAT穿透 P2P通信 介绍
ccCoKOll
p2p网络协议网络
NAT穿透与P2P通信是互联网通信领域中的关键技术,特别是在多点通信、实时互动以及设备间的直接连接中。NAT(网络地址转换)技术在保护网络安全和解决IP地址稀缺问题的同时,也对P2P(对等网络)通信带来了挑战。P2P通信则是一种网络架构,其中每个节点既是服务的提供者也是消费者,它们之间可以直接交换数据,无需通过中央服务器。在P2P网络中,每个节点都有自己的唯一标识,通常是IP地址和端口号。但在NA
- AI人工智能中LSTM在视频行为识别的应用
AI人工智能中LSTM在视频行为识别的应用关键词:LSTM、视频行为识别、深度学习、时序建模、计算机视觉、神经网络、动作识别摘要:本文将深入探讨LSTM(长短期记忆网络)在视频行为识别领域的应用。我们将从基础概念出发,逐步讲解LSTM如何解决视频时序建模的挑战,分析其核心算法原理,并通过实际代码示例展示LSTM在行为识别中的具体实现。文章还将探讨当前的应用场景、工具资源以及未来发展趋势,为读者提供
- API编排在AI原生应用中的5大核心应用场景解析
API编排在AI原生应用中的5大核心应用场景解析关键词:API编排、AI原生应用、微服务架构、工作流自动化、服务集成、智能决策、实时数据处理摘要:本文深入探讨API编排在AI原生应用中的核心应用场景,揭示其如何成为连接智能服务的关键纽带。我们将从基础概念出发,通过5个典型场景分析,展示API编排如何提升AI应用的灵活性、可扩展性和智能化水平,并辅以实际代码示例和架构图解。背景介绍目的和范围本文旨在
- 小程序学习笔记:判断分页数据边界,优化性能
you4580
学习笔记小程序
在小程序开发过程中,数据分页展示是常见的功能需求。但如果处理不当,可能会出现无效的数据请求,影响程序性能。今天咱们就来深入探讨如何在小程序开发里精准判断是否还有下一页数据,并避免发起多余请求。一、问题引入假设有80条美食数据,每页展示10条,理论上8页就能展示完。但在实际操作时,你有没有想过,会不会出现请求第9页、第10页数据这种情况呢?答案是肯定的。就像在开发美食类小程序时,用户不断上拉加载新数
- 小程序学习笔记:实现分页加载商铺列表数据并渲染 UI
you4580
学习笔记小程序
在微信小程序开发中,实现分页加载指定分类下的商铺列表数据,并进行UI渲染是常见的功能需求。本文将详细介绍这一功能的实现过程,包括API接口调用、数据请求、数据处理以及UI渲染和样式美化,同时附上相应代码,帮助大家更好地理解和实践。一、API接口与数据请求(一)API接口地址我们要调用的API接口地址包含一个动态参数:cat_id,这个参数用于指定分类的ID。例如,如果要请求美食分类下的所有商铺列表
- SafeMimic:迈向安全自主的人-到-机器人模仿移动操作
三谷秋水
智能体机器学习人工智能安全机器人人工智能机器学习
25年6月来自德州Austin分校的论文“SafeMimic:TowardsSafeandAutonomousHuman-to-RobotImitationforMobileManipulation”。机器人要想成为高效的家居助手,必须学会仅通过观察人类操作即可完成新的移动操作任务。仅凭人类的单个视频演示进行学习极具挑战性,因为机器人需要首先从演示中提取需要完成的任务及其方法,将策略从第三人称视角
- 【JAVA学习】泛型
我不会写代码njdjnssj
学习
传统方法不能对加入到集合ArrayList中的数据类型进行约束,遍历的时候需要进行类型转换,如果集合中的数据量较大,对效率有影响。泛型又称参数化类型,是JDK5.0出现的新特性,解决数据类型的安全性问题,在类声明或实例化时只要指定好需要的具体类型即可。泛型的好处:1)编译时,检查添加元素的类型,提高了安全性。2)减少了类型转换的次数,提高效率。Dog->Dog->Dog不加泛型的话:Dog加入->
- 多模态AI:让机器像人一样“全感官”理解世界
Echo_Wish
前沿技术人工智能人工智能
多模态AI:让机器像人一样“全感官”理解世界咱们人类理解世界,从来不是只靠单一感官:眼睛看到画面,耳朵听到声音,皮肤感受到温度,嘴巴尝到味道,甚至鼻子闻到气味。正是这多感官的“多模态”输入,构筑了我们对复杂世界的深刻认知。而人工智能领域的多模态学习(MultimodalLearning),正是让机器拥有“多感官”理解能力的技术突破。今天,我想跟大家聊聊:多模态学习为何重要?当前有哪些创新模型?如何
- 2-感知机学习算法
罗东琦
统计学习笔记
感知机模型感知机学习策略学习算法算法收敛性对偶形式与线性SVM的异同感知机(perceptron)是一个线性二分类模型,其目的是寻找一个超平面将正负示例划分开,属于判别模型,也是神经网络与SVM的基础。感知机模型假设输入空间为χ⊆Rnχ⊆Rn,输出空间为Υ⊆{+1,−1}Υ⊆{+1,−1}。输入x∈χx∈χ表示实例的特征向量,输出y∈Υy∈Υ表示实例的类别。则下面的函数f(x)=sign(w⋅x+
- 区块链技术: 稳定币USDC的工作原理
USDCoin(USDC)是由Circle发行的与美元1:1挂钩的稳定币,其核心目标是通过区块链技术实现价格稳定、快速交易和透明的资产支持。以下从区块链技术的角度详细介绍USDC的工作原理,包括其架构、发行机制、储备管理、交易流程及技术优势。1.USDC的区块链架构USDC是一种基于区块链的数字资产,运行在多个公开区块链网络上,采用智能合约技术实现发行、流通和赎回。主要技术特点包括:多链支持:US
- 【PaddleOCR】快速集成 PP-OCRv5 的 Python 实战秘籍--- PaddleOCR实例化 OCR 对象的参数介绍
云天徽上
PaddleOCRpythonocr开发语言人工智能文字识别
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- 【软件系统架构】系列四:嵌入式微处理器
34号树洞
自学软件系统架构系统架构大数据
目录一、嵌入式微处理器体系结构1.1冯·诺依曼结构(VonNeumannArchitecture)1.2哈佛结构(HarvardArchitecture)二、嵌入式微处理器分类2.1按字长分类2.2按集成度分类2.3按应用功能分类三、典型嵌入式处理器类型详解3.1MCU(嵌入式微控制器)3.2MPU(嵌入式微处理器)3.3DSP(数字信号处理器)3.4SoC(片上系统)四、多核处理器架构与调度4.
- 感知机学习
Collin_NLP
机器学习Python
基本概念:感知机是二类分类的线性分类模型,对应于特征空间中将实例划分为正负两类的分离超平面,属判别模型。感知机学习旨在求出将训练数据进行线性划分的分离超平面。感知机的定义:从输入空间Rn到输出空间{+1,-1}的函数映射:f(x)=sign(w*x+b)模型参数:w----权值向量b----偏置wx+b=0-----分离超平面方程数据集{(xi,yi)}with1给定训练集,正例x1=(3,3)x
- 【微信小程序学习】搜索音乐页面代码实现
2401_84434880
程序员微信小程序学习notepad++
}/*热搜榜*/.hotContainer.title{font-size:28rpx;height:80rpx;line-height:80rpx;border-bottom:1rpxsolid#eee;}.hotList{display:flex;flex-wrap:wrap;}.hotItem{width:50%;height:80rpx;line-height:80rpx;font-siz
- 最新人工智能硬件培训AI基础入门学习课程参考2025版(离线AI语音视觉识别篇)
聆思科技AI芯片
聆思大模型开发板实践分享语音识别人机交互人工智能视觉检测嵌入式硬件mcuAI编程
前言端侧离线AI智能硬件作为AI技术的重要载体之一,凭借其无需依赖网络即可实现智能功能的特性,在一些网络条件受限或对数据隐私有较高要求的场景中,发挥着不可或缺的作用。本章基于CSK6大模型语音视觉开发板开箱即用的离线AI能力,分类列出学习课程知识点和实操参考,希望能够帮助大家快速掌握离线AI智能硬件的基础知识与实战技能,同时了解相关AI技术在实际场景的应用情况。正文按入下框架展开,相关理论和实操除
- 全网最全学习Zephyr开发中文教程资料汇总-从基础文档视频到上手实操示例
聆思科技AI芯片
Zephyr保姆级上手教程zephyrAIGC多模态嵌入式硬件iot硬件工程驱动开发
Zephyr作为一款开源且极具灵活性与可扩展性的实时操作系统(RTOS),拥有原生的BLE协议栈、完整的Net协议栈,涵盖TCP/IP与应用层协议,具备出色的实时性,支持硬实时任务调度,确保系统响应的确定性延迟,并且内存占用极小。丰富的通信机制、深度集成的电源管理模式等,也进一步提升了其在嵌入式领域的竞争力。然而,要深入掌握Zephyr开发并非一蹴而就之事。为了方便大家顺利踏上Zephyr开发之路
- 自动驾驶:特斯拉 Model Y全自动驾驶交付的技术原理
InnoLink_1024
自动驾驶人工智能自动驾驶人工智能机器学习
特斯拉ModelY首次实现全程无人控制的全自动驾驶交付,依赖于其先进的FSD(FullSelf-Driving)系统,结合强大的硬件和软件架构。以下从自动驾驶技术的角度,详细介绍其工作原理:1.硬件架构:HW5.0感知与计算平台特斯拉ModelY的全自动驾驶交付基于最新的**HW5.0(Hardware5.0)**平台,其核心硬件包括:传感器套件:12个高清摄像头:提供360°视觉覆盖,分辨率高达
- Python Requests 与 RESTful API 的交互实践
AI天才研究院
AI人工智能与大数据pythonrestful交互ai
PythonRequests与RESTfulAPI的交互实践关键词:PythonRequests、RESTfulAPI、HTTP请求、API交互、JSON数据处理摘要:本文将带你从“零基础”到“实战高手”,用通俗易懂的语言和生活案例,拆解PythonRequests库与RESTfulAPI交互的核心逻辑。我们将学习如何用Requests发送GET/POST/PUT/DELETE等常见HTTP请求,
- 最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)
聆思科技AI芯片
聆思大模型开发板实践分享大模型语音交互人工智能语音识别视觉检测AI编程人机交互
前言在人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模型正在工作生活教育等领域发挥着越来越重要的作用。针对日前前来咨询的广大客户对面向大模型智能硬件的学习需求,我们根据CSK6大模型语音视觉开发板已有功能,整理了一份适合基于本开发板进行教学活动的学习课程参考给大家备
- 机器学习,支持向量机svm和决策树xgboost介绍
suixinm
支持向量机机器学习决策树
支持向量机(SVM)和XGBoost都是非常强大且应用广泛的机器学习算法,但它们基于不同的原理,各有其优势和劣势,适用于不同的场景。以下是两者的主要区别和优劣势对比:1.核心思想与模型类型:SVM:核心思想:找到一个最优的超平面(在特征空间中),将不同类别的样本分隔开,并且使得该超平面到两类样本中最近的样本点(支持向量)的距离(间隔)最大化。核心是几何间隔最大化。模型类型:单个模型(虽然是核方法,
- iOS 系统架构及常用框架
Shi-Lifeng
涨知识ios系统架构常用框架
1.iOS基于UNIX系统,因此从系统的稳定性上来说它要比其他操作系统的产品好很多2.iOS的系统架构分为四层,由上到下一次为:可触摸层(CocoaTouchlayer)、媒体层(Medialayer)、核心服务层(CoreServiceslayer)、核心操作系统层(CoreOSlayer)如图:(1)触摸层:为应用程序开发提供了各种常用的框架并且大部分框架与界面有关,本质上来说它负责用户在iO
- 跨届资源汇聚地:校友平台开启终身学习与职业互助新模式
IDZSY0430
学习大数据运维开发用户运营流量运营
引言在知识经济时代,“校友”二字早已超越单纯的情感符号,演变为蕴含巨大潜能的资源网络。传统校友关系受限于时空隔阂与信息壁垒,难以实现深度互动与资源共享。如今,依托智能化校友平台,一个打破届别、跨越地域的终身学习与职业互助新生态正加速形成,成为驱动个体成长与社群繁荣的核心引擎。一、资源整合:构建校友生态系统的数字基石校友平台的底层逻辑在于系统性整合碎片化资源,为跨届协作奠定量化基础:动态校友数据库平
- 【学习】《算法图解》第十章学习笔记:贪婪算法
程序员
一、贪婪算法概述贪婪算法(GreedyAlgorithm)是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是最好或最优的算法。贪婪算法不从整体最优上加以考虑,它所做出的选择只是在某种意义上的局部最优选择。(一)算法适用场景贪婪算法适用于具有"贪心选择性质"的问题,即局部最优选择能导致全局最优解的问题。主要应用于:需要求解最优化问题问题具有贪心选择性质问题具有最优子结构性质(二
- iOS Camera Framework 架构实战解析:AVFoundation 核心组件与应用流程
观熵
影像技术全景图谱:架构调优与实战ios架构影像Camera
iOSCameraFramework架构实战解析:AVFoundation核心组件与应用流程关键词AVFoundation、iOS相机架构、AVCaptureSession、移动影像、相机框架、iOS开发、拍照录像、图像流处理、Apple影像系统摘要在iOS平台上,Apple提供了强大且结构清晰的AVFoundation框架来支持拍照、录像、图像捕捉与媒体处理等功能。本文将结合真实开发实践,系统梳
- VR训练美国服务器:高性能解决方案与优化指南
cpsvps
vr科技服务器
随着虚拟现实技术的快速发展,VR训练已成为军事、医疗和教育领域的重要工具。美国作为全球科技领先国家,其服务器资源在支持VR训练方面具有显著优势。本文将深入分析VR训练对美国服务器的需求特点、技术架构选择标准、网络延迟优化方案、数据安全防护策略以及未来发展趋势,为需要跨境部署VR训练系统的用户提供专业参考。VR训练美国服务器:高性能解决方案与优化指南VR训练对服务器性能的核心需求VR训练系统对服务器
- 多云环境下存储数据同步-跨平台高效备份与容灾适配策略
cpsvps
云计算
在数字化转型加速的今天,企业数据资产正呈现指数级增长态势。多云存储架构因其弹性扩展、成本优化和规避供应商锁定等优势,已成为现代IT基础设施的标准配置。本文将深入解析多云环境下实现数据高效同步的技术路径,重点探讨跨平台备份的标准化流程、智能分层存储策略以及容灾场景下的数据一致性保障机制,为企业构建符合业务连续性的混合云存储方案提供系统化实施框架。多云环境下存储数据同步-跨平台高效备份与容灾适配策略多
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep