OkHttp

本文基于okhttp3.9x

使用方式

OkHttpClient client = new OkHttpClient(); // 创建okhttp对象

String run(String url) throws IOException {
  Request request = new Request.Builder()
      .url(url)
      .build();

  try (Response response = client.newCall(request).execute()) {
    return response.body().string();
  }
}

可以看出这块用到了建造者模式.第一步创建OKHttpClient对象,然后创建Request,最后发起请求并获取请求结果Response.

类结构

public class OkHttpClient implements Cloneable, Call.Factory, WebSocket.Factory {
...
}
  • Cloneable 表示可以克隆的
  • Call.Factory 接口类,创建一个新的请求包含,newCall方法
  • WebSocket.Factory 接口类,创建一个新的web sockect,包含newWebSocket方法

构造方法

  final Dispatcher dispatcher;
  final @Nullable Proxy proxy;
  final List protocols;
  final List connectionSpecs;
  final List interceptors;
  final List networkInterceptors;
  final EventListener.Factory eventListenerFactory;
  final ProxySelector proxySelector;
  final CookieJar cookieJar;
  final @Nullable Cache cache;
  final @Nullable InternalCache internalCache;
  final SocketFactory socketFactory;
  final @Nullable SSLSocketFactory sslSocketFactory;
  final @Nullable CertificateChainCleaner certificateChainCleaner;
  final HostnameVerifier hostnameVerifier;
  final CertificatePinner certificatePinner;
  final Authenticator proxyAuthenticator;
  final Authenticator authenticator;
  final ConnectionPool connectionPool;
  final Dns dns;
  final boolean followSslRedirects;
  final boolean followRedirects;
  final boolean retryOnConnectionFailure;
  final int connectTimeout;
  final int readTimeout;
  final int writeTimeout;
  final int pingInterval;

  public OkHttpClient() {
    this(new Builder());
  }

  OkHttpClient(Builder builder) {
    this.dispatcher = builder.dispatcher;
    this.proxy = builder.proxy;
    this.protocols = builder.protocols;
    this.connectionSpecs = builder.connectionSpecs;
    this.interceptors = Util.immutableList(builder.interceptors);
    this.networkInterceptors = Util.immutableList(builder.networkInterceptors);
    this.eventListenerFactory = builder.eventListenerFactory;
    this.proxySelector = builder.proxySelector;
    this.cookieJar = builder.cookieJar;
    this.cache = builder.cache;
    this.internalCache = builder.internalCache;
    this.socketFactory = builder.socketFactory;

    boolean isTLS = false;
    for (ConnectionSpec spec : connectionSpecs) {
      isTLS = isTLS || spec.isTls();
    }

    if (builder.sslSocketFactory != null || !isTLS) {
      this.sslSocketFactory = builder.sslSocketFactory;
      this.certificateChainCleaner = builder.certificateChainCleaner;
    } else {
      X509TrustManager trustManager = systemDefaultTrustManager();
      this.sslSocketFactory = systemDefaultSslSocketFactory(trustManager);
      this.certificateChainCleaner = CertificateChainCleaner.get(trustManager);
    }

    this.hostnameVerifier = builder.hostnameVerifier;
    this.certificatePinner = builder.certificatePinner.withCertificateChainCleaner(
        certificateChainCleaner);
    this.proxyAuthenticator = builder.proxyAuthenticator;
    this.authenticator = builder.authenticator;
    this.connectionPool = builder.connectionPool;
    this.dns = builder.dns;
    this.followSslRedirects = builder.followSslRedirects;
    this.followRedirects = builder.followRedirects;
    this.retryOnConnectionFailure = builder.retryOnConnectionFailure;
    this.connectTimeout = builder.connectTimeout;
    this.readTimeout = builder.readTimeout;
    this.writeTimeout = builder.writeTimeout;
    this.pingInterval = builder.pingInterval;

    if (interceptors.contains(null)) {
      throw new IllegalStateException("Null interceptor: " + interceptors);
    }
    if (networkInterceptors.contains(null)) {
      throw new IllegalStateException("Null network interceptor: " + networkInterceptors);
    }
  }

可以看到有两个构造方法,在构造方法中会初始化一个Builder对象(建造者模式),在Builder中设置了OkHttp的属性,比如超时设置、拦截器等。
接下来是Request对象

Request(Builder builder) {
    this.url = builder.url;
    this.method = builder.method;
    this.headers = builder.headers.build();
    this.body = builder.body;
    this.tag = builder.tag != null ? builder.tag : this;
  }

可以看到Request对象也是通过建造者模式创建的,在这里配置了请求url,请求头等信息。

/**
   * Prepares the {@code request} to be executed at some point in the future.
   */
  @Override public Call newCall(Request request) {
    return RealCall.newRealCall(this, request, false /* for web socket */);
  }
private RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
    this.client = client;
    this.originalRequest = originalRequest;
    this.forWebSocket = forWebSocket;
    this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);
  }

  static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
    // Safely publish the Call instance to the EventListener.
    RealCall call = new RealCall(client, originalRequest, forWebSocket);
    call.eventListener = client.eventListenerFactory().create(call);
    return call;
  }

然后调用了newCall方法创建了RealCall实例,然后通过RealCall发起请求,RealCall.newRealCall,RealCall是Call接口的实现类.异步请求调用了RealCall的enqueue()方法.

@Override public void enqueue(Callback responseCallback) {
    synchronized (this) {
      if (executed) throw new IllegalStateException("Already Executed");
      executed = true;
    }
    captureCallStackTrace();
    eventListener.callStart(this);
    client.dispatcher().enqueue(new AsyncCall(responseCallback));
  }

这里实际上调用了Dispatcher的enqueue方法

synchronized void enqueue(AsyncCall call) {
    if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
      runningAsyncCalls.add(call);
      executorService().execute(call);
    } else {
      readyAsyncCalls.add(call);
    }
  }

这里的enqueue方法是个同步方法.首先判断队列是否已满小于maxRequest=64,并且相同host的请求小于maxRequestsPerHost=5,队列不满则开始在线程池中执行请求AsyncCall,AsyncCall继承了NamedRunnable抽象类,而NamedRunnable继承了Runnable接口,在run方法中调用了excute()方法.

/**NamedRunnable中的方法**/
@Override protected void execute() {
      boolean signalledCallback = false;
      try {
        Response response = getResponseWithInterceptorChain();
        if (retryAndFollowUpInterceptor.isCanceled()) {
          signalledCallback = true;
          responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
        } else {
          signalledCallback = true;
          responseCallback.onResponse(RealCall.this, response);
        }
      } catch (IOException e) {
        if (signalledCallback) {
          // Do not signal the callback twice!
          Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
        } else {
          eventListener.callFailed(RealCall.this, e);
          responseCallback.onFailure(RealCall.this, e);
        }
      } finally {
        client.dispatcher().finished(this);
      }
    }

这里就开始了OkHttp核心的请求部分,在OkHttp中使用了责任链模式处理这一部分请求. getResponseWithInterceptorChain()方法

Response getResponseWithInterceptorChain() throws IOException {
    // Build a full stack of interceptors.
    List interceptors = new ArrayList<>();
    interceptors.addAll(client.interceptors());
    interceptors.add(retryAndFollowUpInterceptor);
    interceptors.add(new BridgeInterceptor(client.cookieJar()));
    interceptors.add(new CacheInterceptor(client.internalCache()));
    interceptors.add(new ConnectInterceptor(client));
    if (!forWebSocket) {
      interceptors.addAll(client.networkInterceptors());
    }
    interceptors.add(new CallServerInterceptor(forWebSocket));

    Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
        originalRequest, this, eventListener, client.connectTimeoutMillis(),
        client.readTimeoutMillis(), client.writeTimeoutMillis());

    return chain.proceed(originalRequest);
  }

OKHttp拦截器

上面代码中OKHttp通过各种拦截器处理请求,这里简单介绍下拦截器:

  • 自定义拦截器:提供给用户的定制的拦截器。
  • 重试拦截器(RetryAndFollowUpInterceptor):请求在失败的时候重新开始的拦截器。
  • 桥接拦截器(BridgeInterceptor):主要用来构造请求。
  • 缓存拦截器(CacheInterceptor):主要处理HTTP缓存。
  • 连接拦截器(ConnectInterceptor):主要处理HTTP链接。
  • 网络请求拦截器(CallServerInterceptor):负责发起网络请求。
    上面代码通过RealInterceptorChain的proceed(request)方法开始执行拦截器.
 public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
      RealConnection connection) throws IOException {
    if (index >= interceptors.size()) throw new AssertionError();

    calls++;
    //...
    // Call the next interceptor in the chain.
    RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
        connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
        writeTimeout);
    Interceptor interceptor = interceptors.get(index);
    Response response = interceptor.intercept(next);
    // ...
    return response;
  }

重试拦截器—RetryAndFollowUpInterceptor

public Response intercept(Chain chain) throws IOException {
    //......
    int followUpCount = 0;
    Response priorResponse = null;
    //通过一个循环来重新尝试请求
    while (true) {
      if (canceled) {
        streamAllocation.release();
        throw new IOException("Canceled");
      }
      Response response;
      boolean releaseConnection = true;
      try {
        //1.调用下一个拦截器
        response = realChain.proceed(request, streamAllocation, null, null);
        releaseConnection = false;
      } catch (RouteException e) {
        //......
      } catch (IOException e) {
        //......
      }
      //......
      //2.检测response是否合法
      Request followUp = followUpRequest(response);
      if (followUp == null) {
        if (!forWebSocket) {
          streamAllocation.release();
        }
        //3.返回response,请求完成
        return response;
      }
      //最多尝试20次
      if (++followUpCount > MAX_FOLLOW_UPS) {
        streamAllocation.release();
        throw new ProtocolException("Too many follow-up requests: " + followUpCount);
      }
      //4.重新设置请求
      request = followUp;
      priorResponse = response;
    }
  }

在这里面我们可以看到请求的重度是一个无限循环来处理的,同时在代码里还限制了请求的次数,最多尝试20次.里面的具体逻辑是:
1.开启循环,继续调用下一个拦截器直到返回结果.
2.通过followUpRequest方法检查response是否合法,检查逻辑是根据HTTP返回码检测(比如402这种),如果followup为null则返回结果,否则进行下一步.
3.重新设置request,设置response(用于接下来重新构造response),执行第一步.

桥接拦截器-BridgeInterceptor

public Response intercept(Chain chain) throws IOException {
    Request userRequest = chain.request();
    Request.Builder requestBuilder = userRequest.newBuilder();
    RequestBody body = userRequest.body();
    if (body != null) {
      MediaType contentType = body.contentType();
      if (contentType != null) {
        requestBuilder.header("Content-Type", contentType.toString());
      }
      long contentLength = body.contentLength();
      if (contentLength != -1) {
        requestBuilder.header("Content-Length", Long.toString(contentLength));
        requestBuilder.removeHeader("Transfer-Encoding");
      } else {
        requestBuilder.header("Transfer-Encoding", "chunked");
        requestBuilder.removeHeader("Content-Length");
      }
    }

    if (userRequest.header("Host") == null) {
      requestBuilder.header("Host", hostHeader(userRequest.url(), false));
    }

    if (userRequest.header("Connection") == null) {
      requestBuilder.header("Connection", "Keep-Alive");
    }
    boolean transparentGzip = false;
    if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
      transparentGzip = true;
      requestBuilder.header("Accept-Encoding", "gzip");
    }
    List cookies = cookieJar.loadForRequest(userRequest.url());
    if (!cookies.isEmpty()) {
      requestBuilder.header("Cookie", cookieHeader(cookies));
    }

    if (userRequest.header("User-Agent") == null) {
      requestBuilder.header("User-Agent", Version.userAgent());
    }
    Response networkResponse = chain.proceed(requestBuilder.build());
    HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
    Response.Builder responseBuilder = networkResponse.newBuilder()
        .request(userRequest);
    if (transparentGzip
        && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
        && HttpHeaders.hasBody(networkResponse)) {
      GzipSource responseBody = new GzipSource(networkResponse.body().source());
      Headers strippedHeaders = networkResponse.headers().newBuilder()
          .removeAll("Content-Encoding")
          .removeAll("Content-Length")
          .build();
      responseBuilder.headers(strippedHeaders);
      String contentType = networkResponse.header("Content-Type");
      responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody)));
    }
    return responseBuilder.build();
  }

这个的作用是设置请求头的各种参数,比如Content-Type,Connection,User-Agent等.

缓存拦截器-CacheInterceptor

public Response intercept(Chain chain) throws IOException {
    Response cacheCandidate = cache != null? cache.get(chain.request()): null;//1.取缓存
    long now = System.currentTimeMillis();
    CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get(); //2.验证缓存
    Request networkRequest = strategy.networkRequest;
    Response cacheResponse = strategy.cacheResponse; //获取缓存

    if (cache != null) {
      cache.trackResponse(strategy);
    }
    // If we're forbidden from using the network and the cache is insufficient, fail.
    //如果我们被禁止使用网络并且缓存不足,失败
    if (networkRequest == null && cacheResponse == null) {
      return new Response.Builder()
          .request(chain.request())
          .protocol(Protocol.HTTP_1_1)
          .code(504)
          .message("Unsatisfiable Request (only-if-cached)")
          .body(Util.EMPTY_RESPONSE)
          .sentRequestAtMillis(-1L)
          .receivedResponseAtMillis(System.currentTimeMillis())
          .build();
    }

    // If we don't need the network, we're done.
    //3.直接返回缓存
    if (networkRequest == null) {
      return cacheResponse.newBuilder()
          .cacheResponse(stripBody(cacheResponse))
          .build();
    }
    Response networkResponse = null;
    try {
      //4.没有缓存,执行下一个拦截器
      networkResponse = chain.proceed(networkRequest);
    } 

    // If we have a cache response too, then we're doing a conditional get.
    if (cacheResponse != null) {
      if (networkResponse.code() == HTTP_NOT_MODIFIED) {
        Response response = cacheResponse.newBuilder()
            .headers(combine(cacheResponse.headers(), networkResponse.headers()))
            .sentRequestAtMillis(networkResponse.sentRequestAtMillis())
            .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
            .cacheResponse(stripBody(cacheResponse))
            .networkResponse(stripBody(networkResponse))
            .build();
        networkResponse.body().close();

        // Update the cache after combining headers but before stripping the
        // Content-Encoding header (as performed by initContentStream()).
        cache.trackConditionalCacheHit();
        //5.更新缓存
        cache.update(cacheResponse, response);
        return response;
      } else {
        closeQuietly(cacheResponse.body());
      }
    }
    //......
    if (cache != null) {
      if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
        // Offer this request to the cache.
        //6.保存缓存
        CacheRequest cacheRequest = cache.put(response);
        return cacheWritingResponse(cacheRequest, response);
      }
    }
    return response;
  }

缓存拦截器流程如下:
1.根据请求(以Request为键值)取出缓存;
2.验证缓存是否可用,如果可用则直接取出缓存,否则下一步;
3.继续执行下一个拦截器,直拉返回结果;
4.如果之前有缓存,则更新缓存,否则新增缓存.
缓存拦截器主要的工作就是处理缓存,知道了大致流程后我们接下来分析一下OKhttp是如何管理缓存的.首先我们分析缓存如何获取,在代码中看到是通过cache.get()得到.代码如下:

  final InternalCache internalCache = new InternalCache() {
    @Override public Response get(Request request) throws IOException {
      return Cache.this.get(request);
    }

    @Override public CacheRequest put(Response response) throws IOException {
      return Cache.this.put(response);
    }

    @Override public void remove(Request request) throws IOException {
      Cache.this.remove(request);
    }

    @Override public void update(Response cached, Response network) {
      Cache.this.update(cached, network);
    }

    @Override public void trackConditionalCacheHit() {
      Cache.this.trackConditionalCacheHit();
    }

    @Override public void trackResponse(CacheStrategy cacheStrategy) {
      Cache.this.trackResponse(cacheStrategy);
    }
  };

可以看到缓存是通过InternalCache管理的,而InternalCache是接口类,但是并没有使用他的实现类,直接使用接口,它是Cache的内部子类,InternalCache又调用了Cache的方法.我们这里分析一下get()方法

@Nullable Response get(Request request) {
    String key = key(request.url());
    DiskLruCache.Snapshot snapshot;
    Entry entry;
    try {
      snapshot = cache.get(key);
      if (snapshot == null) {
        return null;
      }
    } catch (IOException e) {
      return null;
    }
    try {
      entry = new Entry(snapshot.getSource(ENTRY_METADATA));
    } catch (IOException e) {
      Util.closeQuietly(snapshot);
      return null;
    }
    Response response = entry.response(snapshot);
    //......
    return response;
  }

key使用的Request的url进行md5->hex算法(16进制)->再转成utf-8.
可以看到缓存是通过DiskLruCache管理的,接下来我们分析下OKHTTP如何验证缓存.
在上面代码中缓存最终来自于CacheStrategy.看一下代码.

public Factory(long nowMillis, Request request, Response cacheResponse) {
      //......
      if (cacheResponse != null) {
        this.sentRequestMillis = cacheResponse.sentRequestAtMillis();
        this.receivedResponseMillis = cacheResponse.receivedResponseAtMillis();
        Headers headers = cacheResponse.headers();
        for (int i = 0, size = headers.size(); i < size; i++) {
          String fieldName = headers.name(i);
          String value = headers.value(i);
          //这里获取了缓存的时间限制
          if ("Date".equalsIgnoreCase(fieldName)) {
            servedDate = HttpDate.parse(value);
            servedDateString = value;
          } else if ("Expires".equalsIgnoreCase(fieldName)) {
            expires = HttpDate.parse(value);
          } else if ("Last-Modified".equalsIgnoreCase(fieldName)) {
            lastModified = HttpDate.parse(value);
            lastModifiedString = value;
          } else if ("ETag".equalsIgnoreCase(fieldName)) {
            etag = value;
          } else if ("Age".equalsIgnoreCase(fieldName)) {
            ageSeconds = HttpHeaders.parseSeconds(value, -1);
          }
        }
      }
    }

public CacheStrategy get() {
      CacheStrategy candidate = getCandidate();
      if (candidate.networkRequest != null && request.cacheControl().onlyIfCached()) {
        // We're forbidden from using the network and the cache is insufficient.
        return new CacheStrategy(null, null);
      }

      return candidate;
    }

private CacheStrategy getCandidate() {
     //......
      long ageMillis = cacheResponseAge();
      long freshMillis = computeFreshnessLifetime(); //计算缓存是否过期
     //......
      return new CacheStrategy(conditionalRequest, cacheResponse);
}

private long computeFreshnessLifetime() {
      //判断缓存是否过期
      CacheControl responseCaching = cacheResponse.cacheControl();
      if (responseCaching.maxAgeSeconds() != -1) {
        return SECONDS.toMillis(responseCaching.maxAgeSeconds());
      } else if (expires != null) {
        long servedMillis = servedDate != null
            ? servedDate.getTime()
            : receivedResponseMillis;
        long delta = expires.getTime() - servedMillis;
        return delta > 0 ? delta : 0;
      } else if (lastModified != null
          && cacheResponse.request().url().query() == null) {
        long servedMillis = servedDate != null
            ? servedDate.getTime()
            : sentRequestMillis;
        long delta = servedMillis - lastModified.getTime();
        return delta > 0 ? (delta / 10) : 0;
      }
      return 0;
    }

我们知道在HTTP中判断缓存是否过期的依据就是根据请求头的字段来判断比如Last-Modified,expires(不同的HTTP版本有不同的字段表示).在OKHTTP中也是根据这些依据.
在上面的代码中,我们可以看到首先会从缓存中获取请求头字段中的时间数据,然后在构造CacheStrategy判断缓存是否过期,最后决定缓存是否合法.

ConnectInterceptor 连接拦截器

ConnectInterceptor的作用就是建立一个与服务端的连接.

public Response intercept(Chain chain) throws IOException {
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    Request request = realChain.request();
    StreamAllocation streamAllocation = realChain.streamAllocation();
    boolean doExtensiveHealthChecks = !request.method().equals("GET");
    HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
    RealConnection connection = streamAllocation.connection();

    return realChain.proceed(request, streamAllocation, httpCodec, connection);
  }

可以看到连接来自于StreamAllocation的newStream方法.

public HttpCodec newStream(
      OkHttpClient client, Interceptor.Chain chain, boolean doExtensiveHealthChecks) {
    int connectTimeout = chain.connectTimeoutMillis();
    int readTimeout = chain.readTimeoutMillis();
    int writeTimeout = chain.writeTimeoutMillis();
    boolean connectionRetryEnabled = client.retryOnConnectionFailure();

    try {
      RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
          writeTimeout, connectionRetryEnabled, doExtensiveHealthChecks);
      HttpCodec resultCodec = resultConnection.newCodec(client, chain, this);

      synchronized (connectionPool) {
        codec = resultCodec;
        return resultCodec;
      }
    } catch (IOException e) {
      throw new RouteException(e);
    }
  }

可以在newStream()方法中继续寻找连接.我们继续分析代码可以看到,OKhttp的连接是维护在一个连接池中的

private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
      boolean connectionRetryEnabled) throws IOException {
    boolean foundPooledConnection = false;
    RealConnection result = null;
    Route selectedRoute = null;
    Connection releasedConnection;
    Socket toClose;
    synchronized (connectionPool) {
      if (released) throw new IllegalStateException("released");
      if (codec != null) throw new IllegalStateException("codec != null");
      if (canceled) throw new IOException("Canceled");

      // Attempt to use an already-allocated connection. We need to be careful here because our
      // already-allocated connection may have been restricted from creating new streams.
      releasedConnection = this.connection;
      toClose = releaseIfNoNewStreams();
      if (this.connection != null) {
        // We had an already-allocated connection and it's good.
        result = this.connection;
        releasedConnection = null;
      }
      if (!reportedAcquired) {
        // If the connection was never reported acquired, don't report it as released!
        releasedConnection = null;
      }

      if (result == null) {
        // Attempt to get a connection from the pool.
        Internal.instance.get(connectionPool, address, this, null);
        if (connection != null) {
          foundPooledConnection = true;
          result = connection;
        } else {
          selectedRoute = route;
        }
      }
    }
    closeQuietly(toClose);

    if (releasedConnection != null) {
      eventListener.connectionReleased(call, releasedConnection);
    }
    if (foundPooledConnection) {
      eventListener.connectionAcquired(call, result);
    }
    if (result != null) {
      // If we found an already-allocated or pooled connection, we're done.
      return result;
    }

    // If we need a route selection, make one. This is a blocking operation.
    boolean newRouteSelection = false;
    if (selectedRoute == null && (routeSelection == null || !routeSelection.hasNext())) {
      newRouteSelection = true;
      routeSelection = routeSelector.next();
    }

    synchronized (connectionPool) {
      if (canceled) throw new IOException("Canceled");

      if (newRouteSelection) {
        // Now that we have a set of IP addresses, make another attempt at getting a connection from
        // the pool. This could match due to connection coalescing.
        List routes = routeSelection.getAll();
        for (int i = 0, size = routes.size(); i < size; i++) {
          Route route = routes.get(i);
          Internal.instance.get(connectionPool, address, this, route);
          if (connection != null) {
            foundPooledConnection = true;
            result = connection;
            this.route = route;
            break;
          }
        }
      }

      if (!foundPooledConnection) {
        if (selectedRoute == null) {
          selectedRoute = routeSelection.next();
        }

        // Create a connection and assign it to this allocation immediately. This makes it possible
        // for an asynchronous cancel() to interrupt the handshake we're about to do.
        route = selectedRoute;
        refusedStreamCount = 0;
        result = new RealConnection(connectionPool, selectedRoute);
        acquire(result, false);
      }
    }

    // If we found a pooled connection on the 2nd time around, we're done.
    if (foundPooledConnection) {
      eventListener.connectionAcquired(call, result);
      return result;
    }

    // Do TCP + TLS handshakes. This is a blocking operation.
    result.connect(
        connectTimeout, readTimeout, writeTimeout, connectionRetryEnabled, call, eventListener);
    routeDatabase().connected(result.route());

    Socket socket = null;
    synchronized (connectionPool) {
      reportedAcquired = true;

      // Pool the connection.
      Internal.instance.put(connectionPool, result);

      // If another multiplexed connection to the same address was created concurrently, then
      // release this connection and acquire that one.
      if (result.isMultiplexed()) {
        socket = Internal.instance.deduplicate(connectionPool, address, this);
        result = connection;
      }
    }
    closeQuietly(socket);

    eventListener.connectionAcquired(call, result);
    return result;
  }

以上是OKHttp获取连接的主要逻辑,方法比较复杂,我们这里总结一下.
1.首先尝试从连接池中获取一个连接,获取连接的参数是地址.如果获取到连接,则返回,否则进行下一步;
2.如果需要选择线程,则继续尝试获取连接.如果获取到连接,则返回,否则进行下一步;
3.创建一个新的连接,然后建立与服务端的TCP连接.
4.将连接加入线程池.

CallServerInterceptor 服务端拦截器

CallServerInterceptor是最后一个拦截器,理所当然这个拦截器负责向服务端发送数据.

public Response intercept(Chain chain) throws IOException {
    //......
    //写入请求头数据
    httpCodec.writeRequestHeaders(request);
    realChain.eventListener().requestHeadersEnd(realChain.call(), request);
    Response.Builder responseBuilder = null;
    if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
      //......
      if (responseBuilder == null) {
        // Write the request body if the "Expect: 100-continue" expectation was met.
        realChain.eventListener().requestBodyStart(realChain.call());
        long contentLength = request.body().contentLength();
        //这里写入请求体
        CountingSink requestBodyOut =
            new CountingSink(httpCodec.createRequestBody(request, contentLength));
        BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
        request.body().writeTo(bufferedRequestBody);
        bufferedRequestBody.close();
        realChain.eventListener()
            .requestBodyEnd(realChain.call(), requestBodyOut.successfulCount);
      } else if (!connection.isMultiplexed()) {
        streamAllocation.noNewStreams();
      }
    }
    //完成请求
    httpCodec.finishRequest();

    if (responseBuilder == null) {
      //这里请求返回,读取返回请求头
      realChain.eventListener().responseHeadersStart(realChain.call());
      responseBuilder = httpCodec.readResponseHeaders(false);
    }

    Response response = responseBuilder
        .request(request)
        .handshake(streamAllocation.connection().handshake())
        .sentRequestAtMillis(sentRequestMillis)
        .receivedResponseAtMillis(System.currentTimeMillis())
        .build();

    realChain.eventListener()
        .responseHeadersEnd(realChain.call(), response);

    int code = response.code();
    if (forWebSocket && code == 101) {
      response = response.newBuilder()
          .body(Util.EMPTY_RESPONSE)
          .build();
    } else {
      //读取返回内容
      response = response.newBuilder()
          .body(httpCodec.openResponseBody(response))
          .build();
    }
    //......
    return response;
  }

可以看到主要是由HttpCodec执行的数据写入以有读取.HttpCodec是一个接口,它实现有两个类,分别是Http1Codec(处理http1.,1请求)和http2Codec(处理Http2)请求.在HttpCodec的实现中主要通过okio与服务端通信 .在上一节的ConnectInterceptor我们知道,Okhttp与服务端建立了一个TCP连接,所以客户端的与服务端的通信是直接通过TCP协议层的,当数据返回时,OKhttp会将数据构造HTTP形式的数据.

OkHttp的工作原理就分析到这里了。在上面的文章中,首先分析了OkHttp在发起请求的准备阶段工作,构造OkHttpClient以及Request,然后通过调度器Dispatcher处理请求任务(请求又分为同步请求和异步请求)。最后通过拦截器处理请求

https://www.jianshu.com/p/7b29b89cd7b5
https://www.jianshu.com/p/310ccf5cbea6
https://blog.csdn.net/programerxiaoer/article/details/97837226

你可能感兴趣的:(OkHttp)