iOS-底层原理 15:类的加载(上)

在上一篇文章iOS-底层原理14:dyld与objc的关联 中理解了dyld与objc的关联,本文的主要目的是理解类的相关信息是如何加载到内存的

本文重点需要理解map_imagesload_image

1、map_images : 加载镜像文件到内存

1.1 map_images的调用

_dyld_objc_notify_register(&map_images, load_images, unmap_image);

为什么map_images&,而load_images不带?

  • map_images引用类型;
  • load_image值类型;

1.2 map_images源码

step1: 进入map_images源码

void
map_images(unsigned count, const char * const paths[],
           const struct mach_header * const mhdrs[])
{
    mutex_locker_t lock(runtimeLock);
    return map_images_nolock(count, paths, mhdrs);
}

其中关键函数map_images_nolock

step2: 进入map_images_nolock源码

void
map_images_nolock(unsigned mhCount, const char * const mhPaths[],
                  const struct mach_header * const mhdrs[])
{
    //...省略

    // Find all images with Objective-C metadata.查找所有带有Objective-C元数据的映像
    hCount = 0;

    // Count classes. Size various table based on the total.计算类的个数
    int totalClasses = 0;
    int unoptimizedTotalClasses = 0;
    //代码块:作用域,进行局部处理,即局部处理一些事件
    {
        //...省略
    }
    
    //...省略

    if (hCount > 0) {
        //加载镜像文件
        _read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);
    }

    firstTime = NO;
    
    // Call image load funcs after everything is set up.一切设置完成后,调用镜像加载功能。
    for (auto func : loadImageFuncs) {
        for (uint32_t i = 0; i < mhCount; i++) {
            func(mhdrs[i]);
        }
    }
}

其中关键代码_read_images

step3: 查看_read_images源码,由于代码过多,就在下面局部分析时贴上关键代码

_read_images主要是主要是加载类信息,即分类协议等,进入_read_images源码实现,主要分为以下几部分:

1、条件控制进行的一次加载
2、修复预编译阶段的@selector的混乱问题
3、错误混乱的类处理
4、修复重映射一些没有被镜像文件加载进来的类
5、修复一些消息
6、当类里面有协议时:readProtocol 读取协议
7、修复没有被加载的协议
8、分类处理
9、类的加载处理
10、没有被处理的类,优化那些被侵犯的类

源码局部分析
1、条件控制进行的一次加载
if (!doneOnce) {
     
  //省略
   ...
    
    // namedClasses
    // Preoptimized classes don't go in this table.
    // 4/3 is NXMapTable's load factor
    int namedClassesSize = 
        (isPreoptimized() ? unoptimizedTotalClasses : totalClasses) * 4 / 3;
//创建表(哈希表key-value),目的是查找快
    gdb_objc_realized_classes =
        NXCreateMapTable(NXStrValueMapPrototype, namedClassesSize);

    ts.log("IMAGE TIMES: first time tasks");
}

在没有执行 if 条件时会进入该流程中,通过NXCreateMapTable 创建表,存放类信息,即创建一张类的哈希表gdb_objc_realized_classes,其目的是为了类查找方便、快捷

查看gdb_objc_realized_classes的注释说明,这个哈希表用于存储不在共享缓存且已命名类,无论类是否实现,其容量是类数量的4/3

// This is a misnomer: gdb_objc_realized_classes is actually a list of 
// named classes not in the dyld shared cache, whether realized or not.
//gdb_objc_realized_classes实际上是不在dyld共享缓存中的已命名类的列表,无论是否实现
NXMapTable *gdb_objc_realized_classes;  // exported for debuggers in objc-gdb.h
2、修复预编译阶段的@selector的混乱问题
// Fix up @selector references 修复@selector引用
//sel 不是简单的字符串,而是带地址的字符串
static size_t UnfixedSelectors;
{
    mutex_locker_t lock(selLock);
    for (EACH_HEADER) {
        if (hi->hasPreoptimizedSelectors()) continue;

        bool isBundle = hi->isBundle();
        //通过_getObjc2SelectorRefs拿到Mach-O中的静态段__objc_selrefs
        SEL *sels = _getObjc2SelectorRefs(hi, &count);
        UnfixedSelectors += count;
        for (i = 0; i < count; i++) { //列表遍历
            const char *name = sel_cname(sels[i]);
            //注册sel操作,即将sel添加到
            SEL sel = sel_registerNameNoLock(name, isBundle);
            if (sels[i] != sel) {//当sel与sels[i]地址不一致时,需要调整为一致的
                sels[i] = sel;
            }
        }
    }
}
测试一下@selector的混乱问题

我们可以看到两个方法的名称相同,但是方法的地址却不相同

为什么会这样?

是因为,我们整个苹果系统中,会有很多库,比如 libobjc、 libsystem 等等,当不同库有相同方法时,比如上图的 class 方法的时候,我们就需要将方法平移到程序的最前面进行执行,例如 CoreFoundation 的 class 方法的 index = 0,而 CoreMedia 的 class 方法 index = 0 + CoreFoundation 的大小。所以我们要将方法进行平移操作。

3、错误混乱的类处理

主要是从Mach-O中取出所有类,在遍历进行处理

//3、错误混乱的类处理
// Discover classes. Fix up unresolved future classes. Mark bundle classes.
bool hasDyldRoots = dyld_shared_cache_some_image_overridden();
//读取类:readClass
for (EACH_HEADER) {
    if (! mustReadClasses(hi, hasDyldRoots)) {
        // Image is sufficiently optimized that we need not call readClass()
        continue;
    }
    //从编译后的类列表中取出所有类,即从Mach-O中获取静态段__objc_classlist,是一个classref_t类型的指针
    classref_t const *classlist = _getObjc2ClassList(hi, &count);

    bool headerIsBundle = hi->isBundle();
    bool headerIsPreoptimized = hi->hasPreoptimizedClasses();

    for (i = 0; i < count; i++) {
        Class cls = (Class)classlist[i];//此时获取的cls只是一个地址
        Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized); //读取类,经过这步后,cls获取的值才是一个名字
        //经过调试,并未执行if里面的流程
        //初始化所有懒加载的类需要的内存空间,但是懒加载类的数据现在是没有加载到的,连类都没有初始化
        if (newCls != cls  &&  newCls) {
            // Class was moved but not deleted. Currently this occurs 
            // only when the new class resolved a future class.
            // Non-lazily realize the class below.
            //将懒加载的类添加到数组中
            resolvedFutureClasses = (Class *)
                realloc(resolvedFutureClasses, 
                        (resolvedFutureClassCount+1) * sizeof(Class));
            resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
        }
    }
}
ts.log("IMAGE TIMES: discover classes");

step1:readClass方法前打一个断点,等程序运行到此处,打印下cls信息

可以看到cls只是一个地址

step2: 继续执行

可以看到,readClass调用后,对 cls 进行了类名的赋值操作。此时类的信息目前仅存储了地址名称

readClass 的源码后面会摘出来分析

4、 修复重映射一些没有被镜像文件加载进来的类
//4、修复重映射一些没有被镜像文件加载进来的类
// Fix up remapped classes 修正重新映射的类
// Class list and nonlazy class list remain unremapped.类列表和非惰性类列表保持未映射
// Class refs and super refs are remapped for message dispatching.类引用和超级引用将重新映射以进行消息分发
//经过调试,并未执行if里面的流程
//将未映射的Class 和 Super Class重映射,被remap的类都是懒加载的类
if (!noClassesRemapped()) {
    for (EACH_HEADER) {
        Class *classrefs = _getObjc2ClassRefs(hi, &count);//Mach-O的静态段 __objc_classrefs
        for (i = 0; i < count; i++) {
            remapClassRef(&classrefs[i]);
        }
        // fixme why doesn't test future1 catch the absence of this?
        classrefs = _getObjc2SuperRefs(hi, &count);//Mach_O中的静态段 __objc_superrefs
        for (i = 0; i < count; i++) {
            remapClassRef(&classrefs[i]);
        }
    }
}

ts.log("IMAGE TIMES: remap classes");

主要是将未映射的ClassSuper Class进行重映射,其中:

  • _getObjc2ClassRefs是获取Mach-O中的静态段__objc_classrefs即类的引用

  • _getObjc2SuperRefs是获取Mach-O中的静态段__objc_superrefs即父类的引用

通过注释可以得知,被remapClassRef的类都是懒加载的类,所以最初经过调试时,这部分代码是没有执行的

5、 修复一些消息
#if SUPPORT_FIXUP
//5、修复一些消息
    // Fix up old objc_msgSend_fixup call sites
    for (EACH_HEADER) {
        // _getObjc2MessageRefs 获取Mach-O的静态段 __objc_msgrefs
        message_ref_t *refs = _getObjc2MessageRefs(hi, &count);
        if (count == 0) continue;

        if (PrintVtables) {
            _objc_inform("VTABLES: repairing %zu unsupported vtable dispatch "
                         "call sites in %s", count, hi->fname());
        }
        //经过调试,并未执行for里面的流程
        //遍历将函数指针进行注册,并fix为新的函数指针
        for (i = 0; i < count; i++) {
            fixupMessageRef(refs+i);
        }
    }

    ts.log("IMAGE TIMES: fix up objc_msgSend_fixup");
#endif

主要是通过_getObjc2MessageRefs 获取Mach-O的静态段__objc_msgrefs,并遍历通过fixupMessageRef将函数指针进行注册,并fix为新的函数指针

6、 当类里面有协议时:readProtocol 读取协议
//6、当类里面有协议时:readProtocol 读取协议
// Discover protocols. Fix up protocol refs. 发现协议。修正协议参考
//遍历所有协议列表,并且将协议列表加载到Protocol的哈希表中
for (EACH_HEADER) {
    extern objc_class OBJC_CLASS_$_Protocol;
    //cls = Protocol类,所有协议和对象的结构体都类似,isa都对应Protocol类
    Class cls = (Class)&OBJC_CLASS_$_Protocol;
    ASSERT(cls);
    //获取protocol哈希表 -- protocol_map
    NXMapTable *protocol_map = protocols();
    bool isPreoptimized = hi->hasPreoptimizedProtocols();

    // Skip reading protocols if this is an image from the shared cache
    // and we support roots
    // Note, after launch we do need to walk the protocol as the protocol
    // in the shared cache is marked with isCanonical() and that may not
    // be true if some non-shared cache binary was chosen as the canonical
    // definition
    if (launchTime && isPreoptimized && cacheSupportsProtocolRoots) {
        if (PrintProtocols) {
            _objc_inform("PROTOCOLS: Skipping reading protocols in image: %s",
                         hi->fname());
        }
        continue;
    }

    bool isBundle = hi->isBundle();
    //通过_getObjc2ProtocolList 获取到Mach-O中的静态段__objc_protolist协议列表,
    //即从编译器中读取并初始化protocol
    protocol_t * const *protolist = _getObjc2ProtocolList(hi, &count);
    for (i = 0; i < count; i++) {
        //通过添加protocol到protocol_map哈希表中
        readProtocol(protolist[i], cls, protocol_map, 
                     isPreoptimized, isBundle);
    }
}

ts.log("IMAGE TIMES: discover protocols");

通过_getObjc2ProtocolList 获取到Mach-O中的静态段__objc_protolist协议列表,即从编译器中读取并初始化protocol

7、 修复没有被加载的协议
//7、修复没有被加载的协议
// Fix up @protocol references
// Preoptimized images may have the right 
// answer already but we don't know for sure.
for (EACH_HEADER) {
    // At launch time, we know preoptimized image refs are pointing at the
    // shared cache definition of a protocol.  We can skip the check on
    // launch, but have to visit @protocol refs for shared cache images
    // loaded later.
    if (launchTime && cacheSupportsProtocolRoots && hi->isPreoptimized())
        continue;
    //_getObjc2ProtocolRefs 获取到Mach-O的静态段 __objc_protorefs
    protocol_t **protolist = _getObjc2ProtocolRefs(hi, &count);
    for (i = 0; i < count; i++) {//遍历
        //比较当前协议和协议列表中的同一个内存地址的协议是否相同,如果不同则替换
        remapProtocolRef(&protolist[i]);//经过代码调试,并未执行
    }
}

ts.log("IMAGE TIMES: fix up @protocol references");

主要是通过_getObjc2ProtocolRefs 获取到Mach-O的静态段__objc_protorefs(与6中的__objc_protolist并不是同一个东西),然后遍历需要修复的协议,通过remapProtocolRef比较当前协议协议列表中的同一个内存地址的协议是否相同,如果不同则替换

8、 分类处理
//8、分类处理
// Discover categories. Only do this after the initial category 发现分类
// attachment has been done. For categories present at startup,
// discovery is deferred until the first load_images call after
// the call to _dyld_objc_notify_register completes. rdar://problem/53119145
if (didInitialAttachCategories) {
    for (EACH_HEADER) {
        load_categories_nolock(hi);
    }
}

ts.log("IMAGE TIMES: discover categories");

主要是处理分类,需要在分类初始化并将数据加载到类后才执行,对于运行时出现的分类,将分类的发现推迟到对_dyld_objc_notify_register的调用完成后的第一个load_images调用为止

9、 类的加载处理
// Realize non-lazy classes (for +load methods and static instances) 初始化非懒加载类,进行rw、ro等操作:realizeClassWithoutSwift
    //懒加载类 -- 别人不动我,我就不动
    //实现非懒加载的类,对于load方法和静态实例变量
    for (EACH_HEADER) {
        //通过_getObjc2NonlazyClassList获取Mach-O的静态段__objc_nlclslist非懒加载类表
        classref_t const *classlist = 
            _getObjc2NonlazyClassList(hi, &count);
        for (i = 0; i < count; i++) {
            Class cls = remapClass(classlist[i]);
            
            const char *mangledName  = cls->mangledName();
             const char *LGPersonName = "LGPerson";
            
             if (strcmp(mangledName, LGPersonName) == 0) {
                 auto kc_ro = (const class_ro_t *)cls->data();
                 printf("_getObjc2NonlazyClassList: 这个是我要研究的 %s \n",LGPersonName);
             }
            
            if (!cls) continue;

            addClassTableEntry(cls);//插入表,但是前面已经插入过了,所以不会重新插入

            if (cls->isSwiftStable()) {
                if (cls->swiftMetadataInitializer()) {
                    _objc_fatal("Swift class %s with a metadata initializer "
                                "is not allowed to be non-lazy",
                                cls->nameForLogging());
                }
                // fixme also disallow relocatable classes
                // We can't disallow all Swift classes because of
                // classes like Swift.__EmptyArrayStorage
            }
            //实现当前的类,因为前面readClass读取到内存的仅仅只有地址+名称,类的data数据并没有加载出来
            //实现所有非懒加载的类(实例化类对象的一些信息,例如rw)
            realizeClassWithoutSwift(cls, nil);
        }
    }

    ts.log("IMAGE TIMES: realize non-lazy classes");

主要是实现类的加载处理,实现非懒加载类

  • 通过_getObjc2NonlazyClassList获取Mach-O的静态段__objc_nlclslist非懒加载类表

  • 通过addClassTableEntry非懒加载类插入类表存储到内存,如果已经添加就不会载添加,需要确保整个结构都被添加

  • 通过realizeClassWithoutSwift实现当前的类,因为前面3中的readClass读取到内存的仅仅只有地址+名称,类的data数据并没有加载出来

10、 没有被处理的类,优化那些被侵犯的类
// Realize newly-resolved future classes, in case CF manipulates them
    if (resolvedFutureClasses) {
        for (i = 0; i < resolvedFutureClassCount; i++) {
            Class cls = resolvedFutureClasses[i];
            if (cls->isSwiftStable()) {
                _objc_fatal("Swift class is not allowed to be future");
            }
            //实现类
            realizeClassWithoutSwift(cls, nil);
            cls->setInstancesRequireRawIsaRecursively(false/*inherited*/);
        }
        free(resolvedFutureClasses);
    }

    ts.log("IMAGE TIMES: realize future classes");

    if (DebugNonFragileIvars) {
        //实现所有类
        realizeAllClasses();
    }

1.3 重要方法分析

1.3.1 readClass:读取类
/***********************************************************************
* readClass
* Read a class and metaclass as written by a compiler. 读取编译器编写的类和元类
* Returns the new class pointer. This could be:  返回新的类指针,可能是:
* - cls
* - nil  (cls has a missing weak-linked superclass)
* - something else (space for this class was reserved by a future class)
*
* Note that all work performed by this function is preflighted by 
* mustReadClasses(). Do not change this function without updating that one.
*
* Locking: runtimeLock acquired by map_images or objc_readClassPair
**********************************************************************/
Class readClass(Class cls, bool headerIsBundle, bool headerIsPreoptimized)
{
    const char *mangledName = cls->mangledName();//名字
    
    //  ----如果想进入自定义,自己加一个判断
    const char *LGPersonName = "LGPerson";
    if (strcmp(mangledName, LGPersonName) == 0) {
        auto kc_ro = (const class_ro_t *)cls->data();
        printf("%s -- 研究重点--%s\n", __func__,mangledName);
    }
    //当前类的父类中若有丢失的weak-linked类,则返回nil
    if (missingWeakSuperclass(cls)) {
        // No superclass (probably weak-linked). 
        // Disavow any knowledge of this subclass.
        if (PrintConnecting) {
            _objc_inform("CLASS: IGNORING class '%s' with "
                         "missing weak-linked superclass", 
                         cls->nameForLogging());
        }
        addRemappedClass(cls, nil);
        cls->superclass = nil;
        return nil;
    }
    
    cls->fixupBackwardDeployingStableSwift();
//判断是不是后期要处理的类
    //正常情况下,不会走到popFutureNamedClass,因为这是专门针对未来待处理的类的操作
    //通过断点调试,不会走到if流程里面,因此也不会对ro、rw进行操作
    Class replacing = nil;
    if (Class newCls = popFutureNamedClass(mangledName)) {
        // This name was previously allocated as a future class.
        // Copy objc_class to future class's struct.
        // Preserve future's rw data block.
        
        if (newCls->isAnySwift()) {
            _objc_fatal("Can't complete future class request for '%s' "
                        "because the real class is too big.", 
                        cls->nameForLogging());
        }
        //读取class的data,设置ro、rw
        //经过调试,并不会走到这里
        class_rw_t *rw = newCls->data();
        const class_ro_t *old_ro = rw->ro();
        memcpy(newCls, cls, sizeof(objc_class));
        rw->set_ro((class_ro_t *)newCls->data());
        newCls->setData(rw);
        freeIfMutable((char *)old_ro->name);
        free((void *)old_ro);
        
        addRemappedClass(cls, newCls);
        
        replacing = cls;
        cls = newCls;
    }
    //判断是否类是否已经加载到内存
    if (headerIsPreoptimized  &&  !replacing) {
        // class list built in shared cache
        // fixme strict assert doesn't work because of duplicates
        // ASSERT(cls == getClass(name));
        ASSERT(getClassExceptSomeSwift(mangledName));
    } else {
        addNamedClass(cls, mangledName, replacing);//加载共享缓存中的类
        addClassTableEntry(cls);//插入表,即相当于从mach-O文件 读取到 内存 中
    }

    // for future reference: shared cache never contains MH_BUNDLEs
    if (headerIsBundle) {
        cls->data()->flags |= RO_FROM_BUNDLE;
        cls->ISA()->data()->flags |= RO_FROM_BUNDLE;
    }
    
    return cls;
}

readClass主要是读取类,在未调用该方法前cls只是一个地址,执行该方法后,cls是类的名称,其源码实现如下,关键代码是addNamedClassaddClassTableEntry,源码实现如下

通过源码实现,主要分为以下几步:

step1: 通过mangledName获取类的名字,其中mangledName方法的源码实现如下

const char *mangledName() { 
        // fixme can't assert locks here
        ASSERT(this);

        if (isRealized()  ||  isFuture()) { //这个初始化判断在lookupImp也有类似的
            return data()->ro()->name;//如果已经实例化,则从ro中获取name
        } else {
            return ((const class_ro_t *)data())->name;//反之,从mach-O的数据data中获取name
        }
    }

step2: 当前类的父类中若有丢失的weak-linked类,则返回nil

step3: 判断是不是后期需要处理的类,在正常情况下,不会走到popFutureNamedClass,因为这是专门针对未来待处理的类的操作,也可以通过断点调试,可知不会走到if流程里面,因此也不会对ro、rw进行操作

  • datamach-O的数据,并不在class的内存

  • ro的赋值是从mach-O中的data强转赋值

  • rw里的ro是从ro复制过去的

step4: 通过addNamedClass将当前类添加到已经创建好的gdb_objc_realized_classes哈希表,该表用于存放所有类

/***********************************************************************
* addNamedClass 加载共享缓存中的类 插入表
* Adds name => cls to the named non-meta class map. 将name=> cls添加到命名的非元类映射
* Warns about duplicate class names and keeps the old mapping.
* Locking: runtimeLock must be held by the caller
**********************************************************************/
static void addNamedClass(Class cls, const char *name, Class replacing = nil)
{
    runtimeLock.assertLocked();
    Class old;
    if ((old = getClassExceptSomeSwift(name))  &&  old != replacing) {
        inform_duplicate(name, old, cls);

        // getMaybeUnrealizedNonMetaClass uses name lookups.
        // Classes not found by name lookup must be in the
        // secondary meta->nonmeta table.
        addNonMetaClass(cls);
    } else {
        //添加到gdb_objc_realized_classes哈希表
        NXMapInsert(gdb_objc_realized_classes, name, cls);
    }
    ASSERT(!(cls->data()->flags & RO_META));

    // wrong: constructed classes are already realized when they get here
    // ASSERT(!cls->isRealized());
}

step5: 通过addClassTableEntry,将初始化的类添加到allocatedClasses表,在_objc_init中的runtime_init就创建了allocatedClasses

/***********************************************************************
* addClassTableEntry 将一个类添加到所有类的表中
* Add a class to the table of all classes. If addMeta is true,
* automatically adds the metaclass of the class as well.
* Locking: runtimeLock must be held by the caller.
**********************************************************************/
static void
addClassTableEntry(Class cls, bool addMeta = true)
{
    runtimeLock.assertLocked();

    // This class is allowed to be a known class via the shared cache or via
    // data segments, but it is not allowed to be in the dynamic table already.
    auto &set = objc::allocatedClasses.get();//开辟的类的表,在objc_init中的runtime_init就创建了表

    ASSERT(set.find(cls) == set.end());

    if (!isKnownClass(cls))
        set.insert(cls);
    if (addMeta)
        //添加到allocatedClasses哈希表
        addClassTableEntry(cls->ISA(), false);
}

【总结】

所以综上所述,readClass的主要作用就是将Mach-O中的类读取到内存,即插入表中,但是目前的类仅有两个信息:地址+名称,而mach-O的其中的data数据还未读取出来

1.3.2 realizeClassWithoutSwift:实现类

realizeClassWithoutSwift方法中有rorw的相关操作,这个方法在消息流程的慢速查找中有所提及,方法路径为:慢速查找(lookUpImpOrForward) -- realizeClassMaybeSwiftAndLeaveLocked -- realizeClassMaybeSwiftMaybeRelock -- realizeClassWithoutSwift(实现类)

realizeClassWithoutSwift方法主要作用是实现类,将类的data数据加载到内存中,主要有以下几部分操作:

  • 【第一步】读取data数据,并设置rorw
  • 【第二步】递归调用realizeClassWithoutSwift完善继承链
  • 【第三步】通过methodizeClass方法化类
第一步:读取data数据

读取classdata数据,并将其强转为ro,以及rw初始化ro拷贝一份到rw中的ro

  • ro 表示 readOnly,即只读,其在编译时就已经确定了内存,包含类名称、方法、协议和实例变量的信息,由于是只读的,所以属于Clean Memory,而Clean Memory是指加载后不会发生更改的内存

  • rw 表示 readWrite,即可读可写,由于其动态性,可能会往类中添加属性、方法、添加协议,在最新的2020的WWDC的对内存优化的说明Advancements in the Objective-C runtime - WWDC 2020 - Videos - Apple Developer中,提到rw,其实在rw中只有10%的类真正的更改了它们的方法,所以有了rwe,即类的额外信息。其中rw就属于dirty memory,而 dirty memory是指在进程运行时会发生更改的内存,类结构一经使用就会变成 ditry memory,因为运行时会向它写入新数据,例如 创建一个新的方法缓存,并从类中指向它

// fixme verify class is not in an un-dlopened part of the shared cache?
//读取class的data(),以及ro/rw创建
auto ro = (const class_ro_t *)cls->data(); //读取类结构的bits属性、//ro -- clean memory,在编译时就已经确定了内存
auto isMeta = ro->flags & RO_META; //判断元类
if (ro->flags & RO_FUTURE) {
    // This was a future class. rw data is already allocated.
    rw = cls->data(); //dirty memory 进行赋值
    ro = cls->data()->ro();
    ASSERT(!isMeta);
    cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
} else { //此时将数据读取进来了,也赋值完毕了
    // Normal class. Allocate writeable class data.
    rw = objc::zalloc(); //申请开辟zalloc -- rw
    rw->set_ro(ro);//rw中的ro设置为临时变量ro
    rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
    cls->setData(rw);//将cls的data赋值为rw形式
}
第二步 递归调用 realizeClassWithoutSwift 完善 继承链

递归调用realizeClassWithoutSwift完善继承链,并设置当前类、父类、元类的rw

  • 递归调用 realizeClassWithoutSwift设置父类、元类

  • 设置父类和元类的isa指向

  • 通过addSubclass 和 addRootClass设置父子的双向链表指向关系,即父类中可以找到子类,子类中可以找到父类

 // Realize superclass and metaclass, if they aren't already.
    // This needs to be done after RW_REALIZED is set above, for root classes.
    // This needs to be done after class index is chosen, for root metaclasses.
    // This assumes that none of those classes have Swift contents,
    //   or that Swift's initializers have already been called.
    //   fixme that assumption will be wrong if we add support
    //   for ObjC subclasses of Swift classes. --
    //递归调用realizeClassWithoutSwift完善继承链,并处理当前类的父类、元类
    //递归实现 设置当前类、父类、元类的 rw,主要目的是确定继承链 (类继承链、元类继承链)
    //实现元类、父类
    //当isa找到根元类之后,根元类的isa是指向自己的,不会返回nil从而导致死循环——remapClass中对类在表中进行查找的操作,如果表中已有该类,则返回一个空值;如果没有则返回当前类,这样保证了类只加载一次并结束递归
    supercls = realizeClassWithoutSwift(remapClass(cls->superclass), nil);
    metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);
    
...

// Update superclass and metaclass in case of remapping -- class 是 双向链表结构 即父子关系都确认了
// 将父类和元类给我们的类 分别是isa和父类的对应值
cls->superclass = supercls;
cls->initClassIsa(metacls);

...

// Connect this class to its superclass's subclass lists
//双向链表指向关系 父类中可以找到子类 子类中也可以找到父类
//通过addSubclass把当前类放到父类的子类列表中去
if (supercls) {
    addSubclass(supercls, cls);
} else {
    addRootClass(cls);
}

这里有一个问题,realizeClassWithoutSwift递归调用时,isa找到根元类之后,根元类的isa是指向自己,并不会返回nil,所以有以下递归终止条件,其目的是保证类只加载一次

  • realizeClassWithoutSwift

    • 如果类不存在,则返回nil
    • 如果类已经实现,则直接返回cls
static Class realizeClassWithoutSwift(Class cls, Class previously)
{
    runtimeLock.assertLocked();
    
    //如果类不存在,则返回nil
    if (!cls) return nil;
    如果类已经实现,则直接返回cls
    if (cls->isRealized()) return cls;
    ASSERT(cls == remapClass(cls));
    
    ...
}
  • remapClass方法中,如果cls不存在,则直接返回nil
/***********************************************************************
* remapClass
* Returns the live class pointer for cls, which may be pointing to 
* a class struct that has been reallocated.
* Returns nil if cls is ignored because of weak linking.
* Locking: runtimeLock must be read- or write-locked by the caller
**********************************************************************/
static Class remapClass(Class cls)
{
    runtimeLock.assertLocked();

    if (!cls) return nil;//如果cls不存在,则返回nil

    auto *map = remappedClasses(NO);
    if (!map)
        return cls;
    
    auto iterator = map->find(cls);
    if (iterator == map->end())
        return cls;
    return std::get<1>(*iterator);
}
第三步通过 methodizeClass 方法合并到类中

通过methodizeClass方法,从ro读取方法列表(包括分类中的方法)、属性列表协议列表赋值给rw,并返回cls

// Attach categories 附加类别 -- 疑问:ro中也有方法列表 rw中也有方法列表,下面这个方法可以说明
//将ro数据写入到rw
methodizeClass(cls, previously);

return cls;
断点调试 realizeClassWithoutSwift

如果我们需要跟踪自定义类,同样需要_read_images方法中的第九步的realizeClassWithoutSwift调用前,以及realizeClassWithoutSwift方法中增加自定义逻辑,主要是为了方便调试自定义类

  • _read_images方法中的第九步的realizeClassWithoutSwift调用前增加自定义逻辑

你可能感兴趣的:(iOS-底层原理 15:类的加载(上))