DataWhale概率统计4——方差分析

6.方差分析

6.1概要

方差分析(Analysis of variance ,ANOVA)主要研究分类变量作为自变量时,对因变量的影响是否显著,用于两个及两个以上样本均属差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分为两类,一是不可控的随机因素,另一是研究中施加对结果形成影响的可控因素

6.2原理

方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发明的,用于两个及两个以上样本均数差别的

方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:

(1) 实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。

(2)随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。

总偏差平方和 SSt = SSb + SSw。

组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。

MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体。 

6.3基本思想

方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。

6.4主要内容

分析方法:根据资料设计类型的不同,有以下2种方差分析方法:

1.对成组设计的多个样本均值比较,应采用完全随机设计的方差分析,即单因素方差分析。

2.对随机区组的多个样本均值比较,应采用配伍组设计的方差分析,即两因素方差分析。

两类方差分析的异同:

两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内,而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差 。

基本步骤

整个方差分析的基本步骤如下:

1、建立检验假设;

H0:多个样本总体均值相等;

H1:多个样本总体均值不相等或不全等。

检验水准为0.05。

2、计算检验统计量F值;

3、确定P值并作出推断结果。

你可能感兴趣的:(DataWhale概率统计4——方差分析)