引入
二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:若它的左子树不为空,则左子树上所有节点的值都小于根节点的值若它的右子树不为空,则右子树上所有节点的值都大于根节点的值它的左右子树也分别为二叉搜索树
左子树的值<根的值<右子树的值
搜索二叉树通过二分查找可以轻松找到目标值,避免了暴力遍历的方式。
根据搜索二叉树的性质,目标值会出现在左子树,右子树则是比目标值大的值。因此,搜索二叉树查找一个值的最坏情况只需要查找树的高度次
既然提到了最坏情况,那么搜索二叉树的时间复杂度是多少呢?
搜索二叉树的增删查改的时间复杂度实际上是O(N),因为这棵树有可能会蜕化成一个 "单边树"(也就是只往一边存,另外一边没有节点)。
//查找
bool Find(const K& key)
{
Node* cur = _root;
//从根开始遍历,走到空说明找不到
while (cur)
{
if (cur->_key < key)
{//遍历的值比要找的值小,往右走
cur = cur->_right;
}
else if (cur->_key > key)
{
//遍历的值比要找的值大,往左走
cur = cur->_left;
}
else
{
//走到这说明找到了
return true;
}
}
//while循环走到头(遇到空节点)那就说明没找到
return false;
}
bool Insert(const K& key)
{
//为空节点的话直接插入
if (_root == nullptr)
{
_root = new Node(key);
return true;
}
//复用一下上面的查找
//走到空节点(出循环)就可以插入了
//需要一个父指针,去连接那个新节点
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//走到这说明可以插入了
cur = new Node(key);
//看情况把它接到父节点的左边还是右边
if (parent->_key < key)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
return true;
}
要删除的结点无孩子结点
要删除的结点只有左孩子结点
要删除的结点只有右孩子结点
要删除的结点有左、右孩子结点
如果原本4节点还有还记记得托付给其父节点 (由于替换法删除是取左子树的最右(右子树的最左)节点,所以哪怕4节点还有子节点,那也只能有一个),比如:
//删除
bool Erase(const K& key)
{
Node* parent = nullptr;
Node* cur = _root;
//先找到要删的那个值
while (cur)
{
if (cur->_key < key)
{//cur走parent也要走
parent = cur;
cur = cur->_right;
}
else if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else
{
//找到了,准备删除
//要删除的节点的左孩子节点为空
if (cur->_left == nullptr)
{
if (cur == _root)
{
//要删的值在根节点,那直接把根节点给右节点就行了(左为空嘛)
_root = cur->_right;
}
else
{
if (cur == parent->_right)
{
//cur左孩子节点为空,若cur在其父节点的右边,那么其右孩子一定大于cur的父节点
//右边托付
parent->_right = cur->_right;
}
else
{
//左边托付
parent->_left = cur->_right;
}
}
//托付完删除
delete cur;
return true;
}
//要删除的节点的右孩子节点为空
else if(cur->_right == nullptr)
{
if (cur == _root)
{
//要删的值在根节点,那直接把根节点给左节点就行了
_root = cur->_left;
}
else
{
if (cur == parent->_right)
{
//若cur在其父节点的右边,那么其左孩子一定大于于cur的父节点
parent->_right = cur->_left;
}
else
{
//左边托付
parent->_left = cur->_left;
}
}
//托付完删除
delete cur;
return true;
}
else
{
//cur左右都非空
Node* rightMin = cur->_right;//右边最小节点
Node* rightMinParent = cur;//右边最小节点的父节点
//找右边的最小节点
while (rightMin->_left)
{
rightMinParent = rightMin;
rightMin = rightMin->_left;
}
//找到就替换一下
cur->_key = rightMin->_key;
//最小节点的孩子得判断是rightMin父亲的哪一边接收
if (rightMin == rightMinParent->_left)
{
rightMinParent->_left = rightMin->_right;
}
else
{
rightMinParent->_right = rightMin->_right;
}
delete rightMin;
return true;
}
}
}
//找不到
return false;
}
节点
template
struct BSTreeNode
{
typedef BSTreeNode Node;
Node* _left;
Node* _right;
K _key;
BSTreeNode(const K& key)
:_left(nullptr)
,_right(nullptr)
,_key(key)
{}
};
二叉树的
template
struct BSTree
{
typedef BSTreeNode Node;
public:
//强制生成默认构造
BSTree() = default;
BSTree(const BSTree& t)
{
_root = Copy(t._root);
}
Node* Copy(Node* root)//前序遍历构造(生成)
{
if (root == nullptr)
return nullptr;
Node* newRoot = new Node(root->_key);
newRoot->_left = Copy(root->_left);
newRoot->_right = Copy(root->_right);
}
BSTree& operator=(BSTree t)
{
swap(_root, t._root);
return *this;
}
~BSTree()
{
Destroy(_root);
}
void Destroy(Node* root)//后序遍历析构(销毁)
{
if (root == nullptr)
{
return;
}
Destroy(root->_left);
Destroy(root->_right);
delete root;
}
private:
Node* _root = nullptr;
};
因为无法传递根节点,所以要封装一层。
bool FindR(const K& key)
{
return _FindR(_root, key);
}
bool _FindR(Node* root, const K& key)
{
if (root == nullptr)
return false;
if (root->_key < key)
{
return _FindR(root->_right, key);
}
else if (root->_key > key)
{
return _FindR(root->_left, key);
}
else
{
return true;
注意:插入的值如何与父节点连接
可以在传(递归)的根节点上加引用,这样每深入一层,那么这层的root就是上一场root->left(right)的引用,也就是说最后一层他会自动连接新节点
bool InsertR(const K& key)
{
return _InsertR(_root, key);
}
bool _InsertR(Node*& root, const K& key)
{
if (root == nullptr)
{
root = new Node(key);
return true;
}
if (root->_key < key)
{
return _InsertR(root->_right, key);
}
else if (root->_key > key)
{
return _InsertR(root->_left, key);
}
else
{
return false;
}
}
这里的引用和上面一样
bool EraseR(const K& key)
{
return _EraseR(_root, key);
}
bool _EraseR(Node*& root, const K& key)
{
if (root == nullptr)
return false;
if (root->_key < key)
{
return _EraseR(root->_right, key);
}
else if (root->_key > key)
{
return _EraseR(root->_left, key);
}
else
{
Node* del = root;
if (root->_right == nullptr)
{
root = root->_left;
}
else if (root->_left == nullptr)
{
root = root->_right;
}
else
{
Node* rightMin = root->_right;
while (rightMin->_left)
{
rightMin = rightMin->_left;
}
swap(root->_key, rightMin->_key);
return _EraseR(root->_right, key);
}
delete del;
return true;
}
}