- Sklearn.model_selection.GridSearchCV
kakak_
MachineLearning
sklearn.model_selection.GridSearchCV具体在scikit-learn中,主要是使用网格搜索,即GridSearchCV类。estimator:即调整的模型param_grid:即要调参的参数列表,以dict呈现。cv:S折交叉验证的折数,即将训练集分成多少份来进行交叉验证。默认是3,。如果样本较多的话,可以适度增大cv的值。scoring:评价标准。获取最好的模型
- 【机器学习】机器学习四大分类
藓类少女
机器学习机器学习分类人工智能
机器学习的方法主要可以分为四大类,根据学习方式和数据标注情况进行分类:1.监督学习(SupervisedLearning)特点:有标注数据(即训练数据有明确的输入(X)和输出(Y))。学习目标是找到一个映射(f(X)\approxY)。适用于分类和回归问题。主要算法:分类(Classification):逻辑回归(LogisticRegression)支持向量机(SVM)朴素贝叶斯(NaïveBa
- OCR识别常见开源库
yxfamyself
计算机视觉opencv
OCR(OpticalCharacterRecognition,光学字符识别)技术是一种将印刷体或手写文字转化为可编辑文本的技术。亦即将图像中的文字进行识别,并以文本的形式返回。做OCR有很多库可以使用。免费开源库有:Tesseract,PaddleOCR。商业付费OCR有:腾讯云OCR,阿里云OCR。下面分别介绍。准确识别的前提是找到正确的字体进行训练,字体很重要,要覆盖所有识别的场景。Tess
- HarmonyOS Next 企业级移动办公应用构建
SameX-4869
harmonyos华为
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)在企业级移动办公应用构建中的应用,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。第一章:应用场景与架构规划一、常见应用场景及要求任务管理在企业办公中,任务管理是核心场景之一。员工需要能够创建任务,详细描述任务
- 鸿蒙NEXT开发【崩溃监测实践】开发运维
沙人防火历飞雨
开发日常harmonyos运维华为鸿蒙鸿蒙系统性能优化
概述崩溃(Crash)指的是应用程序在运行过程中突然停止运行或出现错误导致程序无法正常继续执行。崩溃率作为衡量应用质量的重要指标之一,监测崩溃点,解决崩溃问题,对维护应用的稳定性有着诸多方面的意义:用户体验:崩溃会直接影响用户体验,操作程序时突然Crash,可能导致用户不再打开应用、卸载应用。用户留存率:在同质化的市场竞争中,稳定的应用程序能够吸引用户并提高用户留存率,而崩溃率低就意味着应用的稳定
- Unity 与 JavaScript 的通信交互:实现跨平台的双向通信
Front_Yue
3D技术实践指南unityjavascript3d
前言在现代游戏开发和Web应用中,Unity和JavaScript的结合越来越常见。Unity是一个强大的跨平台游戏引擎,而JavaScript是Web开发的核心技术之一。通过Unity和JavaScript的通信交互,开发者可以实现从Unity到Web页面的功能扩展,或者从Web页面控制Unity的行为。这种双向通信的能力为开发者提供了更多的可能性,例如在Unity中嵌入Web视图,或者在Web
- A800核心加速技术深度剖析
智能计算研究中心
其他
内容概要作为第三代异构计算架构的典型代表,A800通过深度融合通用计算单元与专用加速模块,构建了高度灵活的资源调度体系。其核心突破在于将矩阵运算、并行任务分发与内存访问路径进行系统性重构,解决了传统架构中计算密度与能效失衡的行业痛点。通过实测数据显示,在典型AI训练场景下,A800相较于前代架构实现了3.2倍的吞吐量提升,同时单位功耗下的指令执行效率优化达47%。技术维度第二代架构A800架构提升
- H200架构升级与实战解析
智能计算研究中心
其他
内容概要作为新一代高性能计算平台的核心载体,H200架构通过系统性硬件重构实现了计算性能的显著跃迁。本文将从芯片级设计革新出发,剖析其多维度升级路径:首先解读计算单元拓扑重组带来的并行效率提升,阐释内存子系统的带宽优化策略;继而拆解面向AI训练场景的混合精度加速机制,以及科学计算工作负载的动态资源调度方案。通过比对行业典型部署案例中的能效曲线与吞吐表现,系统化呈现H200在模型训练加速、大规模仿真
- AI模型技术演进与行业应用图谱
智能计算研究中心
其他
内容概要当前AI模型技术正经历从基础架构到行业落地的系统性革新。主流深度学习框架如TensorFlow和PyTorch持续优化动态计算图与分布式训练能力,而MXNet凭借高效的异构计算支持在边缘场景崭露头角。与此同时,模型压缩技术通过量化和知识蒸馏将参数量降低60%-80%,联邦学习则通过加密梯度交换实现多机构数据协同训练。在应用层面,医疗诊断模型通过迁移学习在CT影像分类任务中达到98.2%的准
- 站在巨人的肩膀!字节跳动的这份高并发架构设计的太牛了,不愧是一线大厂(附完整版PDF)
跟着我学Java
Java程序员面试pdf数据库java架构职场和发展
前言我们知道,高并发代表着大流量,高并发系统设计的魅力就在于我们能够凭借自己的聪明才智设计巧妙的方案,从而抵抗巨大流量的冲击,带给用户更好的使用体验。这些方案好似能操纵流量,让流量更加平稳得被系统中的服务和组件处理。来做个简单的比喻吧。从古至今,长江和黄河流域水患不断,远古时期,大禹曾拓宽河道,清除淤沙让流水更加顺畅;都江堰作为史上最成功的的治水案例之一,用引流将岷江之水分流到多个支流中,以分担水
- 【第1章>第6节】CMAC小脑模型神经网络的理论学习与MATLAB仿真
fpga和matlab
#第1章·神经网络学习matlabCMAC小脑模型神经网络人工智能
目录1.使用软件和版本2.CMAC小脑模型神经网络概述2.1CMAC网络结构2.2CMAC地址映射2.3学习过程3.CMAC网络的MATLAB编程实现4.分辨率,重叠度,学习率对CMAC网络的训练性能影响分析4.1分辨率4.2重叠度4.3学习率5.视频操作步骤演示欢迎订阅FPGA/MATLAB/Simulink系列教程《★教程1:matlab入门100例》《★教程2:fpga入门100例》《★教程
- 模式搜索+扩散模型:FlowMo重构图像Token化的技术革命
芯作者
DD:日记重构
图像Token化作为现代生成式AI系统的核心技术,长期面临对抗性训练不稳定、潜在空间冗余等挑战。斯坦福大学李飞飞与吴佳俊团队提出的FlowMo(FlowtowardsModes)创新性地融合模式搜索与扩散模型,在多个关键维度突破传统方法局限,为图像压缩与重建开辟新路径。本文将深度解析其技术突破、实现原理及行业影响。一、传统图像Token化的困境与FlowMo的破局之道1.1传统方法的三大桎梏传统T
- 同一个App开发需求,为什么不同的App开发公司报价天差地别
Haibakeji
reactnativereact.jsjavascriptjavawebappuni-app
在进行App开发项目时,不同公司的报价差异是多方面因素共同作用的结果。以下是导致这种差异的一些主要原因:地域差异不同地区的经济发展水平、生活成本和人力成本存在显著差异,一线城市的人力成本、办公成本等普遍高于二三线城市,因此位于一线城市的开发公司报价往往会更高,位于这些低人力成本地区的App开发公司往往能够提供更具竞争力的价格。技术实力与团队经验技术实力无疑是决定App开发报价的核心要素之一。一家拥
- PX4飞控之位置控制(1)整体架构
Felix_ZL
px4飞控PX4位置控制架构
位置控制是无人机飞控的核心算法之一,一方面根据commander中的flag标志位和Navigator中提供的航点信息进行控制(自主模式下),另一方面得到期望姿态角(setpoint)的四元数信息,给到姿态控制模块进行姿态控制。本文重点PX4飞控的位置控制的代码整体架构(mc_pos_control),具体的控制算法将在后续文章中陆续奉上。位置控制模块的主函数:task_main()1.订阅结构体
- AI大模型训练教程
Small踢倒coffee_氕氘氚
python自学经验分享笔记
1.引言随着人工智能技术的快速发展,大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。训练一个大模型需要大量的计算资源、数据和专业知识。本教程将带你了解如何从零开始训练一个AI大模型。2.准备工作2.1硬件要求GPU:推荐使用NVIDIA的高性能GPU,如A100、V100等。内存:至少64GBRAM。存储:SSD存储,至少1TB。#2.2软件环境操作系统:Lin
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
人工智能深度学习deepseek机器学习算法
大语言模型微调和大语言模型应用的区别?关键要点微调大型语言模型(LLM)是调整预训练模型以适应特定任务或领域的过程,研究表明这能显著提升性能。大型语言模型应用是指将LLM用于实际问题解决或任务执行,如聊天机器人或文本生成。微调和应用的不同在于:微调是准备阶段,应用是最终使用;使用微调模型通常在特定领域表现更好,而预训练模型更适合通用任务。什么是微调大型语言模型?微调大型语言模型是指取一个已经预训练
- 计算机视觉总结
Trank-Lw
计算机视觉深度学习人工智能
以下是针对上述问题的详细解答,并结合代码示例进行说明:1.改进YOLOv5人脸检测模块,复杂光照场景准确率从98.2%提升至99.5%优化具体过程:光照补偿:在数据预处理阶段,采用自适应光照补偿算法,对图像进行实时增强,以减少光照变化对人脸检测的影响。数据增强:在训练数据中增加复杂光照场景下的样本,如强光、弱光、背光等,通过数据增强提高模型对不同光照条件的适应性。模型调整:对YOLOv5模型的网络
- DeepSeek关键RL算法GRPO,有人从头跑通了,贡献完整代码
强化学习曾小健2
大语言模型LLM算法
DeepSeek关键RL算法GRPO,有人从头跑通了,贡献完整代码机器之心2025年03月02日11:54北京选自GitHub作者:AndriyBurkov机器之心编译GRPO(GroupRelativePolicyOptimization)是DeepSeek-R1成功的基础技术之一,我们之前也多次报道过该技术,比如《DeepSeek用的GRPO占用大量内存?有人给出了些破解方法》。简单来说,GR
- 深度学习 Deep Learning 第8章 深度学习优化
odoo中国
AI编程人工智能深度学习人工智能优化
深度学习第8章深度学习的优化章节概述本章深入探讨了深度学习中的优化技术,旨在解决模型训练过程中面临的各种挑战。优化是深度学习的核心环节,直接关系到模型的训练效率和最终性能。本章首先介绍了优化在深度学习中的特殊性,然后详细讨论了多种优化算法,包括随机梯度下降(SGD)、动量法、Nesterov动量法、AdaGrad、RMSProp和Adam等。此外,还探讨了参数初始化策略、自适应学习率方法以及二阶优
- 一文读懂Python列表(5)
跟着杰哥学Python
python
列表让你能够在一个地方存储成组的信息,其中可以只包含几个元素,也可以包含数百万个元素,列表是新手可直接使用的最强大的Python功能之一。一、列表是什么1.列表由按顺序排列的元素组成,用[]表示列表,用逗号分隔元素2.举例:bicycles=['trek','cannondale','redline','specialized']二、列表的索引1.第一个列表元素的索引为0,而不是12.举例:三、访
- 从“制造”到“智造”,看中集“灯塔”生产线与永洪“数据技术”的紧密融合
永洪科技
制造大数据数据分析BI数据可视化
“灯塔”工厂,这一由世界经济论坛提出的概念,已成为制造业领域的一个新的标杆,它代表着制造业的最高智能化水平。作为全球领先的制造企业,中集集团一直致力于提升生产效率和产品质量,以满足全球贸易的不断增长需求。永洪科技与中集集团的合作,正是围绕打造制造业的“灯塔”生产线而展开的。中集集团成立于1980年,总部位于深圳,是中国制造业的领军企业之一,业务涵盖物流、能源、化工等领域。近年来,随着全球经济的复苏
- Win11显示不出WiFi列表?全面解决方案来了
mmoo_python
windows
Win11显示不出WiFi列表?全面解决方案来了在使用Windows11操作系统时,连接WiFi网络无疑是日常工作中最基本也是最关键的需求之一。然而,不少用户却遇到了一个棘手的问题:WiFi列表无法显示,导致无法找到并连接可用的WiFi网络。这一问题不仅影响了用户的正常使用体验,还可能对工作和学习造成不小的困扰。本文将深入分析这一问题的可能原因,并提供多种有效的解决方法,帮助你轻松应对Win11显
- 奇迹科技:蓝牙网关赋能少儿篮球教育的创新融合案例研究
Ms_lan
蓝牙网关北京桂花网智慧体育
一、引言本文研究了福建奇迹运动体育科技有限公司(简称‘奇迹科技’)如何利用其创新产品体系和桂花网蓝牙网关M1500,与少儿篮球教育实现深度融合。重点分析其在提升教学效果、保障训练安全、优化个性化教学等方面的实践与成效,为教育机构和从业者提供参考。二、企业背景奇迹科技由国资上市企业浙数集团与福建省互联网十强企业来玩互娱联合注资成立,专注于数字化体育产业,业务包括数字体育科技研发、打造并运营少儿科技篮
- 生成对抗网络(GAN)的高级变体及在图像生成领域的创新实践
算法探索者
生成对抗网络计算机视觉人工智能
摘要生成对抗网络(GAN)自提出以来,在诸多领域取得了显著进展,尤其是在图像生成方面展现出强大的潜力。本文深入探讨了GAN的多种高级变体,如CycleGAN、StyleGAN等,详细分析它们在结构设计、训练机制上的创新之处,阐述其在生成高分辨率、多样化图像时具备的独特优势,并结合丰富的实际案例,展示这些变体在图像生成领域的卓越应用成果,为相关研究与应用提供全面且深入的参考。一、引言生成对抗网络(G
- java队列实现限流_如何使用队列实现微服务限流算法?
纽太普
java队列实现限流
队列在平时开发中可能是出现频率最高的数据结构之一了,但是大部分情况下,我们都是用别人已经实现好的,比如kafka,比如redis里的list,以至于让人怀疑为什么还要去学习队列呢?希望今天的内容可以给你一些启发。什么是队列为了整个文章的完整性,我们还是来介绍一下什么是队列。我们举个生活中常见的案例,假设你在周杰伦的奶茶店买奶茶,由于人很多,为了保持公平和秩序,你被要求排队,最先来的人排到最前面,这
- Android Compose 框架基本状态管理(mutableStateOf、State 接口)深入剖析(十四)
&有梦想的咸鱼&
android
AndroidCompose框架基本状态管理(mutableStateOf、State接口)深入剖析一、引言在Android开发的历史长河中,UI开发模式经历了从传统的XML布局到动态视图操作,再到如今声明式UI框架的转变。AndroidCompose作为Google推出的新一代声明式UI工具包,为开发者带来了全新的UI开发体验。其中,状态管理是Compose框架的核心概念之一,它决定了UI如何根
- 《代码拯救世界》
可问 可问春风
重生之我来csdn写小说网络计算机小说网络安全
《代码拯救世界》第一章:神秘的黑客组织“全球多个银行系统遭受黑客攻击,资金被大量转移,损失高达数十亿美元……”新闻播报员的声音在办公室里回荡,小陈的手心已经捏出了汗。作为一名网络安全工程师,他知道这次攻击的严重性远超普通黑客行为。“老李,你看这个。”小陈把一份报告递给同事,“攻击手法非常专业,利用了多个零日漏洞(未被公开的漏洞),而且目标明确,显然是早有预谋。”老李推了推眼镜,眉头紧锁:“这不像普
- 一文说清预训练与微调:AI的双重训练法则
TGITCIC
AI-大模型的落地之道人工智能深度学习
什么是预训练?预训练是大型语言模型训练的第一步。它在资金和计算能力的支持下,通过深入分析大量的文本数据,使模型建立起语言的基本构架。在这一阶段,模型通过学习海量的书籍、文章和网页,识别出语言的语法、句法和词汇规律。这就如同一名学生接受通识教育,他并没有专注于某一门学科,而是获取了多方面的知识。自回归语言建模和掩码语言建模是预训练中常见的两种方法。前者在逐步构建文本的连贯性时,通过预测下一单词的方式
- 「智驾普及」引发需求井喷,这一上游细分供应链严重缺货!
高工智能汽车
人工智能自动驾驶
2025年,车载CIS市场无疑将是智驾供应链市场最火的赛道之一。今年开年的一场智驾普及运动,不仅带来了车载摄像头市场的爆发,同时还引发摄像头模组核心元器件—车用CMOS图像传感器(CIS)芯片需求出现井喷。高工智能汽车研究院监测数据显示,2024年1-12月,中国市场(不含进出口)乘用车前装标配(含免费选装促销)NOA交付197.47万辆,同比增长162.31%。上车方案基本上都是采用多摄像头模组
- 介于YOLOv5的裂缝识别系统
程序员~小强
YOLO
介于YOLOv5的裂缝识别系统在现代工业中,裂缝监测是的保障设施安全的重要环节。我们公司的新项目——基于YOLOv5的裂缝识别系统,将为您提供高效、精准的解决方案,助力各类工程项目的质量管理。系统优势我们的裂缝识别系统借助YOLOv5进行深度学习,经过精心训练,拥有强大的图像识别能力。只需简单的步骤,您就能将复杂的裂缝检测转化为轻松的操作,让分析变得更加简单、高效。核心功能图片上传与场景选择用户可
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/