C++总计63个关键字,C语言32个关键字
ps:下面我们只是看一下C++有多少关键字,不对关键字进行具体讲解。后面我们学到以后再细讲。
在C/C++中,变量,函数和和后面要学到的类都是大量存在的,这些变量、函数和类的名称都将存在全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,以避免命名冲突或名字污染, namespace关键字的出现就是针对这种问题的
#include
#include
int rand = 10;
// C语言没办法解决类似这样的命名冲突问题,所以C++提出了namespace来解决
int main()
{
printf("%d\n", rand);
return 0;
}
// 编译后后报错:error C2365: “rand”: 重定义;以前的定义是“函数”
定义命名空间,需要使用namespace关键字,后面跟命名空间的名字,然后接一对{}即可,{}中即为命名空间的成员。
// bit是命名空间的名字,一般开发中是用项目名字做命名空间名。
// 我们上课用的是bit,大家下去以后自己练习用自己名字缩写即可,如张三:zs
// 1. 正常的命名空间定义
namespace bit
{
// 命名空间中可以定义变量/函数/类型
int rand = 10;
int Add(int left, int right)
{
return left + right;
}
比特就业课
注意:一个命名空间就定义了一个新的作用域,命名空间中的所有内容都局限于该命名空间中
2.2 命名空间使用
命名空间中成员该如何使用呢?比如:
struct Node
{
struct Node* next;
int val;
};
}
//2. 命名空间可以嵌套
// test.cpp
namespace N1
{
int a;
int b;
int Add(int left, int right)
{
return left + right;
}
namespace N2
{
int c;
int d;
int Sub(int left, int right)
{
return left - right;
}
}
}
//3. 同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中。
// ps:一个工程中的test.h和上面test.cpp中两个N1会被合并成一个
// test.h
namespace N1
{
int Mul(int left, int right)
{
return left * right;
}
}
注意:一个命名空间就定义了一个新的作用域,命名空间中的所有内容都局限于该命名空间中
命名空间中成员该如何使用呢?比如
namespace bit
{
// 命名空间中可以定义变量/函数/类型
int a = 0;
int b = 1;
int Add(int left, int right)
{
return left + right;
}
struct Node
{
struct Node* next;
int val;
};
}
int main()
{
// 编译报错:error C2065: “a”: 未声明的标识符
printf("%d\n", a);
return 0;
}
命名空间的使用有三种方式:
int main()
{
printf("%d\n", N::a);
return 0;
}
using N::b;
int main()
{
printf("%d\n", N::a);
printf("%d\n", b);
return 0;
}
using namespce N;
int main()
{
printf("%d\n", N::a);
printf("%d\n", b);
Add(10, 20);
return 0;
}
#include
// std是C++标准库的命名空间名,C++将标准库的定义实现都放到这个命名空间中
using namespace std;
int main()
{
cout<<"Hello world!!!"<<endl;
return 0;
}
说明:
#include
using namespace std;
int main()
{
int a;
double b;
char c;
// 可以自动识别变量的类型
cin>>a;
cin>>b>>c;
cout<<a<<endl;
cout<<b<<" "<<c<<endl;
return 0;
}
std命名空间的使用惯例:
std是C++标准库的命名空间,如何展开std使用更合理呢?
1.在日常练习中,建议直接使用using namespace std 即可, 这样就很方便。
2.using namespace std 展开,标准库就全部暴露出来了,如果我们定义跟库重名的;类型/对象/函数,就存在冲突问题。该问题在日常练习中很少出现,但是项目开发中代码较多、规模大, 就很容易出现。
默认参数是声明或定义函数时为函数的参数指定一个默认值。在调用该函数的时候,如果没有指定实参则采用该形参的默认值,否则使用指定的实参。
void Func(int a = 0)
{
cout<<a<<endl;
}
int main()
{
Func(); // 没有传参时,使用参数的默认值
Func(10); // 传参时,使用指定的实参
return 0;
}
void Func(int a = 10, int b = 20, int c = 30)
{
cout<<"a = "<<a<<endl;
cout<<"b = "<<b<<endl;
cout<<"c = "<<c<<endl;
}
void Func(int a, int b = 10, int c = 20)
{
cout<<"a = "<<a<<endl;
cout<<"b = "<<b<<endl;
cout<<"c = "<<c<<endl;
}
注意:
1.半默认参数必须从右往左依次来给出,不能间隔着给
2.默认参数不能在函数声明和定义中同时出现
//a.h
void Func(int a = 10);
// a.cpp
void Func(int a = 20)
{}
// 注意:如果生命与定义位置同时出现,恰巧两个位置提供的值不同,那编译器就无法确定到底该用那个缺省值。
3.默认参数必须是常量或者全局变量
4.C语言不支持(编译器不支持)
自然语言中,一个词可以有多重含义,人们可以从上下文来判断该词真实含义,即该词被重载了。
函数重载:是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这些同名函数的形参列表(参数个数 或 类型 或 类型顺序)不同,常用来处理实现功能类似数据类似不同的问题。
#include
using namespace std;
// 1、参数类型不同
int Add(int left, int right)
{
cout << "int Add(int left, int right)" << endl;
return left + right;
}
double Add(double left, double right)
{
cout << "double Add(double left, double right)" << endl;
return left + right;
}
// 2、参数个数不同
void f()
{
cout << "f()" << endl;
}
void f(int a)
{
cout << "f(int a)" << endl;
}
// 3、参数类型顺序不同
void f(int a, char b)
{
cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{
cout << "f(char b, int a)" << endl;
}
int main()
{
Add(10, 20);
Add(10.1, 20.2);
f();
f(10);
f(10, 'a');
f('a', 10);
return 0;
}
为什么C++支持函数重载,而C语言不支持函数重载呢?
在C/C++中,一个程序要运行起来,需要经历一下几个阶段:预处理,编译, 汇编,链接。
实际项目通常是由多个头文件和多个源文件构成,而通过C语言阶段学习的编译链接,我们可以知道,【当前a.cpp中调用了b.cpp中定义的Add函数时】,编译后链接前,a.o的目标文件中没有Add的函数地址,因为Add是在b.cpp中定义的,所以Add的地址在b.o中。那么怎么办呢?
所以链接阶段就是专门处理这种问题,链接器看到a.o调用Add,但是没有Add的地址,就会到到b.o的符号表中找Add的地址,然后链接到一起。
那么链接时,面对Add函数,链接器会使用那个名字去找呢?这里每个编译器都有自己的函数名修饰规则。
由于Windows下vs的修饰规则过于复杂,而Linux下g++的修饰规则就很简单易懂。下面是G++演示了这个修饰后的名字。
通过下面我们可以看出gcc的函数修饰后名字不变。而g++的函数修饰后变成【Z+函数长度+函数名+类型首字母】
采用C++编译器编译后的结果
结论:在Linux下,采用G++编译完成后,函数名字的修饰发生了改变,编译器将函数参数类型信息添加到修改后的名字中。
引用不是新定义一个变量,而是给已存在变量去了一个别名,编译器不会为引用变量开辟空间,它和它引用的变量共用同一块内存空间。
类型& 引用变量名(对象名)= 引用实体;
voidTestRef()
{
int a=10;
int& ra=a;//<====定义引用类型
printf("%p\n",&a);
printf("%p\n",&ra);
}
注意:引用类型必须和引用实体是同种类型的
1.引用在定义时必须初始化
2.一个变量可以有多个引用
3.引用一旦引用一个实体,再不能引用其他实体
voidTestRef()
{
int a=10;
// int& ra; //该条语句编译时会出错
int& ra=a;
int& rra=a;
printf("%p %p %p\n",&a,&ra,&rra);
}
voidTestConstRef()
{
const int a=10;
//int& ra = a; //该语句编译时会出错,a为常量
const int& ra=a;
// int& b = 10; //该语句编译时会出错,b为常量
const int& b=10;
double d=12.34;
//int& rd = d; //该语句编译时会出错,类型不同
const int& rd=d;
}
1.做参数
void Swap(int& left, int& right)
{
int temp = left;
left = right;
right = temp;
}
2.做返回值
int& Count()
{
static int n = 0;
n++;
// ...
return n;
}
注意:函数如果函数返回时,出了函数作用域,如果返回对象还在(还没还给系统),则可以使用引用返回,如果已经还给系统了,则必须使用传值返回
以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直
接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效
率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低
#include
struct A{ int a[10000]; };
void TestFunc1(A a){}
void TestFunc2(A& a){}
void TestRefAndValue()
{
A a;
// 以值作为函数参数
size_t begin1 = clock();
for (size_t i = 0; i < 10000; ++i)
TestFunc1(a);
size_t end1 = clock();
// 以引用作为函数参数
size_t begin2 = clock();
for (size_t i = 0; i < 10000; ++i)
TestFunc2(a);
size_t end2 = clock();
// 分别计算两个函数运行结束后的时间
cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;
cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}
#include
struct A{ int a[10000]; };
A a;
// 值返回
A TestFunc1() { return a;}
// 引用返回
A& TestFunc2(){ return a;}
void TestReturnByRefOrValue()
{
// 以值作为函数的返回值类型
size_t begin1 = clock();
for (size_t i = 0; i < 100000; ++i)
TestFunc1();
size_t end1 = clock();
// 以引用作为函数的返回值类型
size_t begin2 = clock();
for (size_t i = 0; i < 100000; ++i)
TestFunc2();
size_t end2 = clock();
// 计算两个函数运算完成之后的时间
cout << "TestFunc1 time:" << end1 - begin1 << endl;
cout << "TestFunc2 time:" << end2 - begin2 << endl;
}
通过上述代码的比较,发现传值和指针在作为传参以及返回值类型上效率相差很大。
在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。
int main()
{
int a = 10;
int& ra = a;
cout<<"&a = "<<&a<<endl;
cout<<"&ra = "<<&ra<<endl;
return 0;
}
在底层实现上实际是有空间的,因为引用是按照指针方式来实现的。
int main()
{
int a = 10;
int& ra = a;
ra = 20;
int* pa = &a;
*pa = 20;
return 0;
}
以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率
如果在上述函数前增加inline关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的
调用。
查看方式:
// F.h
#include
using namespace std;
inline void f(int i);
// F.cpp
#include "F.h"
void f(int i)
{
cout << i << endl;
}
// main.cpp
#include "F.h"
int main()
{
f(10);
return 0;
}
// 链接错误:main.obj : error LNK2019: 无法解析的外部符号 "void __cdecl
f(int)" (?f@@YAXH@Z),该符号在函数 _main 中被引用
随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:
1.类型难于拼写
2.含义不明确导致容易出错
#include
#include
int main()
{
std::map<std::string, std::string> m{ { "apple", "苹果" }, { "orange","橙子" },{"pear","梨"} };
std::map<std::string, std::string>::iterator it = m.begin();
while (it != m.end())
{
//....
}
return 0;
}
std::map
易写错。聪明的同学可能已经想到:可以通过typedef给类型取别名,比如:
#include
#include
typedef std::map<std::string, std::string> Map;
int main()
{
Map m{ { "apple", "苹果" },{ "orange", "橙子" },{"pear","梨"} };
Map::iterator it = m.begin();
while (it != m.end())
{
//....
}
return 0;
}
使用typedef给类型取别名确实可以简化代码,但是typedef有会遇到新的难题:
typedef char* pstring;
int main()
{
const pstring p1; // 编译成功还是失败?
const pstring* p2; // 编译成功还是失败?
return 0;
}
在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的类型。然而有时候要做到这点并非那么容易,因此C++11给auto赋予了新的含义。
在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有人去使用它,大家可思考下为什么?
C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得
int TestAuto()
{
return 10;
}
int main()
{
int a = 10;
auto b = a;
auto c = 'a';
auto d = TestAuto();
cout << typeid(b).name() << endl;
cout << typeid(c).name() << endl;
cout << typeid(d).name() << endl;
//auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化
return 0;
}
【注意】
使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编
译期会将auto替换为变量实际的类型
1.auto与指针和引用结合起来使用
用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须加&
int main()
{
int x = 10;
auto a = &x;
auto* b = &x;
auto& c = x;
cout << typeid(a).name() << endl;
cout << typeid(b).name() << endl;
cout << typeid(c).name() << endl;
*a = 20;
*b = 30;
c = 40;
return 0;
}
void TestAuto()
{
auto a = 1, b = 2;
auto c = 3, d = 4.0; // 该行代码会编译失败,因为c和d的初始化表达式类型不同
}
// 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导
void TestAuto(auto a)
{}
void TestAuto()
{
int a[] = {1,2,3};
auto b[] = {4,5,6};
}
在C++98中如果要遍历一个数组,可以按照以下方式进行:
void TestFor()
{
int array[] = { 1, 2, 3, 4, 5 };
for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)
array[i] *= 2;
for (int* p = array; p < array + sizeof(array)/ sizeof(array[0]); ++p)
cout << *p << endl;
}
对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因
此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范围内用于迭代的变量,第二部分则表示被迭代的范围
void TestFor()
{
int array[] = { 1, 2, 3, 4, 5 };
for(auto& e : array)
e *= 2;
for(auto e : array)
cout << e << " ";
return 0;
}
注意:与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环。
void TestFor(int array[])
{
for(auto& e : array)
cout<< e <<endl;
}
在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下方式对其进行初始化:
void TestPtr()
{
int* p1 = NULL;
int* p2 = 0;
// ……
}
NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:
#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif
可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量。不论采取何种定义,在使用空值的指针时,都不可避免的会遇到一些麻烦,比如:
void f(int)
{
cout<<"f(int)"<<endl;
}
void f(int*)
{
cout<<"f(int*)"<<endl;
}
int main()
{
f(0);
f(NULL);
f((int*)NULL);
return 0;
}
程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的
初衷相悖。在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void*)0。
注意:
1.在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为关键字引入的。
2.在C++11中,sizeof(nullptr)与sizeof((void*)0)所占字节数相同。
3.为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。