Week 2

P. Charalambous, Sergei Dubovsky and M. M. Ivanov, “Hidden Symmetry of Vanishing Love’’

这篇文章的题目里“hidden symmetry”比较吸引我,abstract的第一句就是:“ We show that perturbations of massless fields in the Kerr black hole background enjoy a hidden infinite-dimensional (“Love”) symmetry in the properly defined near zone approximation…”
Kerr metric的hidden symmetry的故事大家可能比较熟悉:除了Killing vector 之外,Kerr metric 还允许Killing tensor, Killing-Yano tensor,他们都对应了守恒量。一个直接的结果就是,在Kerr metric 里的场方程(spin=0, +-1/2,+=1,+-2)都是可以分离变量的 (Teukolsky master equation)。
Kerr metric 另外一个大家会说的“hidden symmetry” 是在 near zone limit下的 Kerr/CFT duality 的conformal symmetry。
这篇文章里提到的hidden symmetry和这两个都不同,所以一个自然的问题,这个hidden symmetry 和前两个hidden symmetry 的区别。

一个相关背景是有关love number的,这里也可以摘抄一些文章的intro:

The LIGO detection of gravitational waves [1] from in- spiralling black hole binaries opened an era of precision black hole physics 。The worldline effective theory provides an efficient modern toolbox for analytical calculations of the waveforms from binary inspirals and for interpreting the results. In this framework each of the individual black holes in the binary is treated as a point- like particle. Finite size effects are captured by higher- dimensional operators on the worldline.
Wilson coefficients in front of operators with a quadratic dependence on external fields are called Love numbers.

总的来说,是黑洞物理有效理论中的一些物理量。一般的逻辑是,通过考虑时空中的external (probe)场的动力学方程,我们可以研究时空本身的一些几何性质。这里的worldline有效理论也是类似的工具。之前的一个研究发现 “static Love numbers, which determine response to time-independent external fields, are found to vanish in four-dimensional Einstein theory both for spherical and spinning black holes
” 这些计算也是前两年才完成的。这篇文章提出static love number vanishing可以用对称性来解释。

怎么看到这个对称性?

考虑最简单的s=0 的Teukolsky 方程里

这里要取一个特殊的near zone limit ,对于严格的Kerr,。值得注意的是这个near zone limit与Kerr/CFT的limit 并不相同。在这个特殊的极限下,作者发现,这个方程等价于

是一个SL(2,R)代数的Casimir算符,并且还可以写下SL(2,R)代数的3个生成元(3个vector field), 他们在horizon处都是regular的。所以在这个近似下,Teukolsky的regular的解构成了SL(2,R)代数的一个表示。所以我们可以把这个symmetry 理解为一种dynamical symmetry。从表示论还有generator的形式还可以直接看出Love number 是等于0的。这个symmetry也被称为love symmetry。
另外一个有意思的地方是,这个Love symmetry 可以enhance成一个无穷维的代数。这个enhance的原因于Hofman&Strominger的argument 也不同。因为Teukolsky解构成的表示并不都是unitary的。

与Kerr/CFT conformal symmetry 的区别

  1. Kerr/CFT取的near horizon limit和这里的取的不同,虽然在Kerr/CFT的limit 下,hidden symmetry 是SL(2,R)*SL(2,R),但是他的生成元不是globally well defined,所以Teukolsky的regular solution并不构成这conformal symmetry 的表示。
  2. SL(2,R) Love symmetry不但是globally well defined而且他有一个smooth Schwarzchild limit。

基于这两点,他们猜测,Love symmetry是研究Kerr 黑洞全息的更好的出发点:“…it is natural to identify the hidden Love symmetry with the SL(2,R) isometry of the extreme near horizon region , then a nonextreme Kerr black hole may be considered as an excitation above the leading Regge trajectory populated by extreme Kerr ”

但是文章并没有指出love symmetry 与 Killing tensor直接的关系。

文章的结尾也比较有意思
It is a popular slogan nowadays that “black holes are the hydrogen atom of 21st century”. We see that this comparison is actually accurate in a very concrete technical sense. Low energy dynamics of both systems is governed by an emergent integrable algebraic structure.

It is still natural to wonder who ordered these structures. What are the reasons for the SO(4) Laplace– Runge–Lentz symmetry of the hydrogen atom from the viewpoint of the full quantum electrodynamics and for the Love symmetry of black holes from the viewpoint of the full general relativity?

你可能感兴趣的:(Week 2)