- 从 TCP/IP 协议栈角度深入分析网络文件系统 (NFS)
一、引言:NFS与TCP/IP的关系概述网络文件系统(NetworkFileSystem,NFS)是一种分布式文件系统协议,允许客户端通过网络访问远程服务器上的文件系统,就像访问本地文件系统一样。NFS是SunMicrosystems在20世纪80年代开发的,旨在提供一种透明的、与平台无关的文件共享机制。从设计理念来看,NFS的核心目标是"消除本地文件和远程文件之间的区别",使用户能够像操作本地文
- mbuf 全面分析:从概念到应用的深度解析
一、mbuf基础概念与原理1.1mbuf的定义与基本原理mbuf(memorybuffer,内存缓冲区)是一种高效的内存管理机制,主要用于存储和处理网络数据包及其他需要临时存储的数据。它最初由BSD(BerkeleySoftwareDistribution)操作系统引入,并在后续的网络处理框架中得到广泛应用,特别是在高性能网络数据处理领域,如DPDK(DataPlaneDevelopmentKit
- AutoGen行业应用与典型场景实践
摘要AutoGen作为分布式多智能体AI系统,已在金融、医疗、教育、智能客服等行业落地应用。本文系统梳理AutoGen在各行业的应用模式、业务流程、Python实战、最佳实践与常见问题,助力中国AI开发者高效构建行业级AI解决方案。1.AutoGen行业应用全景与价值支持多智能体协作,适配复杂业务流程易于集成主流大模型与行业工具分布式部署,满足高可用与弹性扩展需求典型行业:金融风控、医疗问答、教育
- AI 大模型重塑软件开发流程的四点观察:跃迁/重构/变革/挑战
敖行客 Allthinker
Thinker说人工智能大模型
作为软件开发的从业者,笔者深刻感受到AI大模型对开发流程的颠覆性影响。从最初的代码补全工具到如今能够自主完成复杂任务的智能协作者,AI的角色转变正推动软件开发范式发生系统性变革。基于实际开发经验与行业案例,从四个维度,浅显讲述一下AI大模型重塑软件开发流程的观察。观察一:编码能力突破——从“助手”到“协作者”的技术跃迁核心变化:AI从“补全代码片段”进化为“自主构建完整系统”过去,AI在开发中的角
- 揭开 MCP 的神秘面纱:标准化 AI 上下文管理的未来(上)
愤怒的可乐
大模型自然语言处理人工智能python开发语言
引言最近MCP大火,本文尝试揭开它神秘的面纱。文章较长,分为上下两篇。架构MCP协议遵循客户端-主机-服务器架构,其中一个主机应用运行多个客户端实例,每个客户端实例维护了和服务器建立的独立的连接。Host:希望通过MCP访问数据的程序,比如一个聊天应用程序。Client:与服务器保持1:1连接(会话)的客户端,Host通过这个Client连接不同的Server提供的功能。Server:通过MCP公
- Llama改进之——RoPE旋转位置编码
愤怒的可乐
NLP项目实战#LLaMARoPE旋转位置编码
引言旋转位置编码(RotaryPositionEmbedding,RoPE)将绝对相对位置依赖纳入自注意力机制中,以增强Transformer架构的性能。目前很火的大模型LLaMA、QWen等都应用了旋转位置编码。之前在[论文笔记]ROFORMER中对旋转位置编码的原始论文进行了解析,重点推导了旋转位置编码的公式,本文侧重实现,同时尽量简化数学上的推理,详细推理可见最后的参考文章。复数与极坐标复数
- ATmega16微控制器编程与应用实践
love彤彤
本文还有配套的精品资源,点击获取简介:ATmega16是一个基于AVR架构的8位微控制器,广泛用于嵌入式系统控制应用。本文将详细介绍如何在ATmega16上实现1602液晶显示、独立键盘操作、数码管扫描、蜂鸣器控制和流水灯设计等常用功能。通过这些功能的实践项目,读者可以掌握C语言在嵌入式系统开发中的应用,包括I/O口编程、定时器设置、中断处理和串行通信等关键技术。1.ATmega16微控制器简介A
- 手把手从零打造 Llama3:解锁下一代预训练模型
会飞的Anthony
信息系统人工智能AIGC自然语言处理人工智能llama3AIGC
引言Llama3相较于Llama2,不仅在模型架构上做了显著优化,尤其是全局查询注意力机制(GQA)的引入,使得模型在大规模数据处理上表现更加出色。同时,Llama3采用了与GPT一致的tiktoken分词器,大幅提升了分词效率。本篇文章将带你从头构建Llama3预训练流程,深入了解其关键细节和实现方式,让你掌握这一下一代模型的核心技术。1.启动训练脚本在这一步中,我们将实现Llama3的预训练框
- 从零实现Llama3:深入解析Transformer架构与实现细节
祁婉菲Flora
从零实现Llama3:深入解析Transformer架构与实现细节llama3-from-scratchllama3一次实现一个矩阵乘法。项目地址:https://gitcode.com/gh_mirrors/ll/llama3-from-scratch引言本文将深入探讨如何从零开始实现Llama3语言模型。我们将从最基本的张量操作开始,逐步构建完整的Transformer架构。通过这个过程,读者
- Redis主从复制详解
卜锦元
redis高可用性数据库redis数据库linux缓存
前言本文对于redis主从复制相关知识进行详细的解释,主要从主从复制的原理、配置方式、数据流转过程、重要概念与机制、常见问题与解决方案、典型使用场景、局限性与处理方案等方面出发,帮助我们更好的理解Redis的主从复制知识。一、Redis主从复制原理(Replication)主从复制是指一个Redis主节点(Master)将数据同步到一个或多个从节点(Slave/Replica),从节点一般以只读方
- 抗辐照芯片在核电厂火灾探测器中的应用优势与性能解析
国科安芯
科普网络人工智能运维自动化
一、引言核电厂作为能源供应的关键设施,其安全性备受关注。火灾是威胁核电厂安全运行的重要风险因素之一。在核电厂的特殊环境下,火灾探测器肩负着及时发现火情、保障核电厂安全运行的重任。然而,核电厂存在高能辐射等复杂环境因素,这对火灾探测器中的芯片性能提出了极为严苛的要求。传统芯片在辐射环境下易出现性能退化、功能异常等问题,导致火灾探测器无法准确工作。因此,研发和应用抗辐照芯片成为解决这一问题的关键。抗辐
- Boost.Asio 的 TCP 通信教程
FHKHH
网络编程tcp/ip网络协议网络
一、引言本教程将详细介绍如何使用Boost.Asio库实现一个简单的TCP通信示例,包括服务器端和客户端的代码编写、编译以及运行流程。同时,我们会对通信过程中的各个关键步骤进行详细讲解,帮助读者理解TCP通信在Boost.Asio中的实现方式。后续如果需要扩展功能,例如并发处理多个客户端连接或使用异步通信等,可以在此基础上进行修改。二、准备工作确保系统中已安装Boost库。确保编译器(如g++)能
- 如何训练一个 Reward Model:RLHF 的核心组件详解
茫茫人海一粒沙
深度学习人工智能强化学习
RewardModel(奖励模型)是RLHF的核心,决定了模型“觉得人类偏好什么”的依据。本文将系统介绍如何从零开始训练一个rewardmodel,包括数据准备、模型结构、损失函数、训练方法与注意事项。什么是RewardModel?RewardModel(RM)是一个评分器:它输入一个文本(通常是prompt+模型回答),输出一个实数分值(reward),表示这个回答的“人类偏好程度”。它不是分类
- pytorch小记(二十六):全面解读 PyTorch 的 `torch.matmul`
pytorch小记(二十六):全面解读PyTorch的`torch.matmul`PyTorch中的`torch.matmul`详解与使用指南一、什么是`torch.matmul`二、基本用法示例1.向量点积(1-D×1-D)2.二维矩阵乘法(2-D×2-D)3.批量矩阵乘法(≥3-D)4.向量与矩阵混合三、与`mm`、`bmm`的区别四、性能与数值稳定性五、典型应用场景六、注意事项七、总结在深度
- pytorch小记(二十七):深入理解 PyTorch 中的 `.contiguous()`:内存布局与数据不变性
pytorch小记(二十七):深入理解PyTorch中的`.contiguous`:内存布局与数据不变性深入理解PyTorch中的`.contiguous()`:内存布局与数据不变性一、张量连续性(contiguity)概念二、`.contiguous()`的作用三、`.contiguous()`是否改变数值?四、与`.clone()`的区别五、常见使用场景六、总结深入理解PyTorch中的.co
- 深入解析React性能优化三剑客:React.memo、useMemo与useCallback
目录渲染机制基础React的渲染流程解析组件重渲染的根本原因性能优化的核心目标React.memo深度解析组件级缓存原理浅比较机制详解自定义比较函数实现useMemo核心技术值缓存机制剖析引用稳定性控制复杂计算场景实战useCallback终极指南函数缓存本质闭包陷阱解决方案事件处理最佳实践三者的黄金组合联合使用场景分析性能优化效果对比常见误区与反模式性能监控方法论ReactDevTools实战技
- 从 Vue 到 React:React.memo + useCallback 组合技
目录一、Vue与React的组件更新机制对比二、React.memo是什么?三、常见坑:为什么我用了React.memo还是会重新渲染?四、解决方案:useMemo/useCallback缓存引用五、Vue3中有类似的性能控制需求吗?六、组合优化小技巧总结七、不过话又说回来一、Vue与React的组件更新机制对比在Vue中,组件的更新依赖于响应式系统的依赖追踪:父组件更新时,Vue会判断data是
- Github 2025-06-28 Rust开源项目日报 Top10
老孙正经胡说
githubrust开源Github趋势分析开源项目PythonGolang
根据GithubTrendings的统计,今日(2025-06-28统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下:开发语言项目数量Rust项目10Rust实现的非官方Bitwarden兼容服务器创建周期:2317天开发语言:Rust协议类型:GNUAfferoGeneralPublicLicensev3.0Star数量:34391个Fork数量:1671次关注人数:34391人
- Linux 基础IO
xuanzdhc
Linuxlinux服务器运维
标准库IO接口操作句柄:FILE*文件流指针系统调用接口操作句柄:文件描述符接口操作:详情点击接口操作文件描述符内核为每个打开的文件或I/O资源分配的唯一整数表示定义文件描述符是一个非负整数,用于表示进程已打开的文件、套接字、管道等资源每个进程维护一个文件描述符表,记录已打开资源标准文件描述符:每个进程默认有三个预打开的文件描述符012工作原理三层抽象文件描述符表:每个进程独有的数组,索引为文件描
- PCIe Crosslink
zly8865372
fpga开发
PCIeCrosslink:概念、应用与实现PCIeCrosslink(交叉连接)是一种特殊的PCIe链路连接方式,允许两个PCIe设备(通常是RootComplex或Endpoint)直接通过PCIe链路互连,而无需通过传统的PCIeSwitch或RootComplex转发。这种技术主要用于高性能计算(HPC)、FPGA加速、GPU直连等场景,以降低延迟并提高带宽利用率。1.PCIeCrossl
- Linux 系统管理:高效运维与性能优化
代码老y
运维linux性能优化
一、Linux系统管理基础(一)用户与权限管理用户和权限管理是Linux系统管理的基础。通过合理配置用户和权限,可以确保系统的安全性和稳定性。用户管理使用useradd、usermod和userdel命令管理用户账户。使用passwd命令设置用户密码。使用groups和gpasswd命令管理用户组。权限管理使用chmod命令设置文件和目录的权限。使用chown和chgrp命令更改文件和目录的所有者
- NUMA 架构科普:双路 CPU 系统是如何构建的?
NUMA(Non-UniformMemoryAccess,非一致性内存访问)是一种用于多处理器系统的内存架构设计,主要应用于服务器、工作站和高性能计算(HPC)领域。它的核心特点是不同CPU访问不同内存区域的速度不一致,这与传统的UMA(UniformMemoryAccess,一致性内存访问)架构不同。1.NUMA的物理结构(1)双路CPU系统的硬件组成在典型的双路(2P)服务器主板上,会有:2颗
- 昇腾NPU节点软件版本检查与升级方法
一、问题背景当我们需要在节点部署DeepSeek大模型时,需要检查昇腾云配套的版本驱动和固件版本,如果发现节点版本不配套建议升级到配套版本。检查方法:npu-smiinfo-tboard-i1|egrep-i"software|firmware"二、升级方法需要注意的是,一定要先升级固件,再升级驱动;如果需要降级版本,流程与升级一样。一般而言,固件包是带有firmware关键字,驱动包带有dirv
- [学习]M-QAM的数学原理与调制解调原理详解(仿真示例)
M-QAM的数学原理与调制解调原理详解QAM(正交幅度调制)作为现代数字通信的核心技术,其数学原理和实现方法值得深入探讨。本文将分为数学原理、调制解调原理和实现要点三个部分进行系统阐述。文章目录M-QAM的数学原理与调制解调原理详解一、数学原理二、调制原理三、解调原理四、实现要点五、16QAM的Python仿真实现5.1完整仿真代码5.2关键代码解析5.3仿真结果分析六、性能优化方向七、MATLA
- 解锁数据潜能——亮数据Web数据集,精准、全面、即时
程序猿追
其他领域嵌入式效率性能优化科技计算机外设
解锁数据潜能——亮数据Web数据集,精准、全面、即时在数据驱动的时代,获取高质量的网络数据成为许多企业与研究机构的核心需求。亮数据推出的Web数据集产品,试图通过技术手段解决传统数据采集中的痛点,为使用者提供更高效的数据支持方案。该数据集的核心优势体现在三个维度:数据精准度、覆盖全面性和更新即时性。在精准度方面,通过动态IP网络与智能解析算法的结合,有效降低了传统爬虫常遇到的反爬干扰,使获取的数据
- 利用人名语言分类案例演示RNN、LSTM和GRU的区别(基于PyTorch)
.30-06Springfield
rnnlstmgru分类人工智能pythonpytorch
文章目录一、程序结构1.1程序整体结构1.2各模块功能关系流程图二、数据预处理模块详解2.1定义字符集和语言类别2.2读取数据2.3人名转换为one-hot编码张量2.4自定义数据集类2.5数据加载器三、模型定义模块详解3.1RNN模型3.2LSTM模型3.3GRU模型四、模型训练与测试模块详解4.1测试模型基本功能4.2模型训练主函数五、结果可视化与对比模块详解六、模型预测模块详解七、案例结果分
- iOS 上架效率提升指南:五个团队角色与工具链协同实践
2501_91590906
httpudphttpswebsocket网络安全网络协议tcp/ip
在一个主要用Flutter开发的零售SaaS项目中,我们有5个关键岗位:移动开发、后端、产品经理、UI设计、运维。大多数成员日常工作环境是Windows或Linux,团队里仅有一台远程Mac可用于iOS构建。以下按角色顺序,复盘一次iOSApp上架过程中他们如何分工,以及各自使用到的工具,如无Mac用appuploader上架,真实记录从打包到审核的全链路。①移动开发工程师:编写功能、调试构建任务
- Web 服务器架构选择深度解析
后端
在Web服务与API设计中,服务器架构的选择直接决定系统的可扩展性、维护成本与性能上限。本文从架构演进脉络出发,系统解析单体架构、微服务、服务网格、Serverless等主流架构的核心特性、适用场景及Java技术栈实现。一、架构演进与核心分类1.1架构演进脉络1.2核心架构对比表架构类型核心特点典型技术栈(Java)部署复杂度扩展性单体架构所有功能模块打包为单一应用,共享数据库SpringBoot
- cocos2d pod_Cocos2D-X权威指南(第2版)[按需印刷]
weixin_39685697
cocos2dpod
第一部分基础篇本部分内容第1章认识Cocos2D-X第2章搭建跨平台的开发环境第3章Cocos2D-X中的核心类第4章Cocos2D-X中的图片渲染类第5章Cocos2D-X中的动作、特效与动画第6章Cocos2D-X中的菜单项和文本渲染系统第7章Cocos2D-X中的事件处理机制和UI控件第8章Cocos2D-X中的瓦片地图集第9章Cocos2D-X中的声音、存储和网络第10章Cocos2D-X
- 为什么YashanDB数据库是大数据处理的理想选择?
数据库
在当今大数据时代,如何高效管理和处理海量数据成为了许多企业的首要挑战。针对这一问题,选择合适的数据库系统至关重要。尤其是在大数据场景中,诸如数据存储、数据访问效率和并发控制等技术要求提高,给数据库的选择带来了更高的标准。YashanDB作为一款高性能数据库,以其独特的架构设计与一系列优秀的功能,成为大数据处理的理想选择。高度可扩展的部署架构YashanDB支持多种部署形态,包括单机部署、分布式集群
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不