* 491.递增子序列
* 46.全排列
* 47.全排列 II
本题和大家刚做过的 90.子集II 非常像,但又很不一样,很容易掉坑里。
https://programmercarl.com/0491.%E9%80%92%E5%A2%9E%E5%AD%90%E5%BA%8F%E5%88%97.html
视频讲解:https://www.bilibili.com/video/BV1EG4y1h78v
class Solution {
List<List<Integer>> result = new ArrayList<>();
List<Integer> path = new ArrayList<>();
public List<List<Integer>> findSubsequences(int[] nums) {
backTracking(nums, 0);
return result;
}
private void backTracking(int[] nums, int startIndex){
if(path.size() >= 2)
result.add(new ArrayList<>(path));
HashSet<Integer> hs = new HashSet<>();
for(int i = startIndex; i < nums.length; i++){
if(!path.isEmpty() && path.get(path.size() -1 ) > nums[i] || hs.contains(nums[i]))
continue;
hs.add(nums[i]);
path.add(nums[i]);
backTracking(nums, i + 1);
path.remove(path.size() - 1);
}
}
}
class Solution {
private List<Integer> path = new ArrayList<>();
private List<List<Integer>> res = new ArrayList<>();
public List<List<Integer>> findSubsequences(int[] nums) {
backtracking(nums,0);
return res;
}
private void backtracking (int[] nums, int start) {
if (path.size() > 1) {
res.add(new ArrayList<>(path));
}
int[] used = new int[201];
for (int i = start; i < nums.length; i++) {
if (!path.isEmpty() && nums[i] < path.get(path.size() - 1) ||
(used[nums[i] + 100] == 1)) continue;
used[nums[i] + 100] = 1;
path.add(nums[i]);
backtracking(nums, i + 1);
path.remove(path.size() - 1);
}
}
}
//法二:使用map
class Solution {
//结果集合
List<List<Integer>> res = new ArrayList<>();
//路径集合
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> findSubsequences(int[] nums) {
getSubsequences(nums,0);
return res;
}
private void getSubsequences( int[] nums, int start ) {
if(path.size()>1 ){
res.add( new ArrayList<>(path) );
// 注意这里不要加return,要取树上的节点
}
HashMap<Integer,Integer> map = new HashMap<>();
for(int i=start ;i < nums.length ;i++){
if(!path.isEmpty() && nums[i]< path.getLast()){
continue;
}
// 使用过了当前数字
if ( map.getOrDefault( nums[i],0 ) >=1 ){
continue;
}
map.put(nums[i],map.getOrDefault( nums[i],0 )+1);
path.add( nums[i] );
getSubsequences( nums,i+1 );
path.removeLast();
}
}
}
本题重点感受一下,排列问题 与 组合问题,组合总和,子集问题的区别。 为什么排列问题不用 startIndex
https://programmercarl.com/0046.%E5%85%A8%E6%8E%92%E5%88%97.html
视频讲解:https://www.bilibili.com/video/BV19v4y1S79W
class Solution {
List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
boolean[] used;
public List<List<Integer>> permute(int[] nums) {
if (nums.length == 0){
return result;
}
used = new boolean[nums.length];
permuteHelper(nums);
return result;
}
private void permuteHelper(int[] nums){
if (path.size() == nums.length){
result.add(new ArrayList<>(path));
return;
}
for (int i = 0; i < nums.length; i++){
if (used[i]){
continue;
}
used[i] = true;
path.add(nums[i]);
permuteHelper(nums);
path.removeLast();
used[i] = false;
}
}
}
// 解法2:通过判断path中是否存在数字,排除已经选择的数字
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> permute(int[] nums) {
if (nums.length == 0) return result;
backtrack(nums, path);
return result;
}
public void backtrack(int[] nums, LinkedList<Integer> path) {
if (path.size() == nums.length) {
result.add(new ArrayList<>(path));
}
for (int i =0; i < nums.length; i++) {
// 如果path中已有,则跳过
if (path.contains(nums[i])) {
continue;
}
path.add(nums[i]);
backtrack(nums, path);
path.removeLast();
}
}
}
本题 就是我们讲过的 40.组合总和II 去重逻辑 和 46.全排列 的结合,可以先自己做一下,然后重点看一下 文章中 我讲的拓展内容。 used[i - 1] == true 也行,used[i - 1] == false 也行
https://programmercarl.com/0047.%E5%85%A8%E6%8E%92%E5%88%97II.html
视频讲解:https://www.bilibili.com/video/BV1R84y1i7Tm
class Solution {
//存放结果
List<List<Integer>> result = new ArrayList<>();
//暂存结果
List<Integer> path = new ArrayList<>();
public List<List<Integer>> permuteUnique(int[] nums) {
boolean[] used = new boolean[nums.length];
Arrays.fill(used, false);
Arrays.sort(nums);
backTrack(nums, used);
return result;
}
private void backTrack(int[] nums, boolean[] used) {
if (path.size() == nums.length) {
result.add(new ArrayList<>(path));
return;
}
for (int i = 0; i < nums.length; i++) {
// used[i - 1] == true,说明同⼀树⽀nums[i - 1]使⽤过
// used[i - 1] == false,说明同⼀树层nums[i - 1]使⽤过
// 如果同⼀树层nums[i - 1]使⽤过则直接跳过
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
continue;
}
//如果同⼀树⽀nums[i]没使⽤过开始处理
if (used[i] == false) {
used[i] = true;//标记同⼀树⽀nums[i]使⽤过,防止同一树枝重复使用
path.add(nums[i]);
backTrack(nums, used);
path.remove(path.size() - 1);//回溯,说明同⼀树层nums[i]使⽤过,防止下一树层重复
used[i] = false;//回溯
}
}
}
}