var arr = [ [1, 2, 2], [3, 4, 5, 5], [6, 7, 8, 9, [11, 12, [12, 13, [14] ] ] ], 10];
编写一个程序将数组扁平化去并除其中重复部分数据,最终得到一个升序且不重复的数组
方法一
先用Array.prototype.flat()按照一个可指定的深度递归遍历数组,并将所有元素与遍历到的子数组中的元素合并为一个新数组返回。——其中Infinity,展开任意深度的嵌套数组
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
在使用Set 将数组去重
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
在使用sort将数组进行排序
var arr = [[1, 2, 2], [3, 4, 5, 5], [6, 7, 8, 9, [11, 12, [12, 13, [14]]]], 10];
console.log(Array.from(new Set(arr.flat(Infinity))).sort((a, b) => a - b))
方法二
先使用arr.toString()将里面的所有数组变成字符串
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
在使用.split(’,’)将每个都用最外层数组的子元素
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
在使用Set做去重的处理
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
在使用Array.from转成数组
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
在使用.map(Number)将元素转化为数字
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
在使用sort将数组进行排序
var arr = [[1, 2, 2], [3, 4, 5, 5], [6, 7, 8, 9, [11, 12, [12, 13, [14]]]], 10];
console.log(Array.from(new Set(arr.toString().split(','))).map(Number).sort((a, b) => a - b))
方法三
// 第一步:扁平化
let newArr = [];
function flat(originArr) {
if ({}.toString.call(originArr) === '[object Array]') {
for (let i of originArr) {
if ({}.toString.call(i) === '[object Array]') {
arguments.callee(i)
} else {
newArr.push(i)
}
}
}
return newArr;
}
console.log(flat(arr))
// 第二步:去重
var newArr1 = [];
for (let i of newArr) {
if (!newArr1.includes(i)) newArr1.push(i);
}
// 第三步:排序 可以采用相关算法处理
console.log(newArr1.sort((a, b) => a - b))
1.回调函数——callback
setTimeout(() => {
// callback 函数体
}, 1000)
缺点:
1.回调地狱,不能用try catch 捕获错误,不能return
2.缺乏顺序性:回调地狱导致的调试困难
3.嵌套函数存在耦合性,一旦有所改动,就会牵一发而动全身,即(控制反转,嵌套函数过多的多话,很难处理错误
2.Promise
Promise就是为了解决callback的问题而产生的。
Promise实现了链式调用,也就是说每次.then后返回的都是一个全新的Promise,如果我们在.then中return,return的结果会被Promise.resolve()包裹。
ajax('XXX1')
.then(res => {
// 操作逻辑
return ajax('XXX2')
}).then(res => {
// 操作逻辑
return ajax('XXX3')
}).then(res => {
// 操作逻辑
})
缺点:
无法取消Promise,错误需要通过回调函数来捕获
3.Generator
特点:可以控制函数的执行,可以配合co函数库使用
function* fetch() {
yield ajax('XXX1', () => { })
yield ajax('XXX2', () => { })
yield ajax('XXX3', () => { })
}
let it = fetch()
let result1 = it.next()
let result2 = it.next()
let result3 = it.next()
async、await 是异步的终极解决方案
优点:
代码清晰,不用像 Promise 写一大堆 then 链,处理了回调地狱的问题
缺点:
await 将异步代码改造成同步代码,如果多个异步操作没有依赖性而使用 await 会导致性能上的降低。
async function test() {
// 以下代码没有依赖性的话,完全可以使用 Promise.all 的方式
// 如果有依赖性的话,其实就是解决回调地狱的例子了
await fetch('XXX1')
await fetch('XXX2')
await fetch('XXX3')
}
const promise = new Promise((resolve, reject) => {
console.log(1)
resolve()
console.log(2)
})
promise.then(() => {
console.log(3)
})
console.log(4)
执行结果是:1243
promise构造函数是同步执行的,then方法是异步执行的
首先创建一个空的对象,空对象的 ___proto____属性指向构造函数的原型对象
把上面创建的空对象赋值构造函数内部的this,用构造函数内部的方法修改空对象
如果构造函数返回一个非基本类型的值,则返回这个值,否则上面创建的对象
function _new(fn, ...arg) {
var obj = Object.create(fn.prototype);
const result = fn.apply(obj, ...arg);
return Object.prototype.toString.call(result) == '[object Object]' ? result : obj;
}
HTTP2采用二进制格式传输,取代了HTTP1.x的文本格式,二进制格式解析更高效。
多路复用代替了HTTP1.x的序列和阻塞机制,所有的相同域名请求都通过同一个TCP连接并发完成。在HTTP1.x中,并发多个请求需要多个TCP连接,浏览器为了控制资源会有6-8个TCP连接都限制。
HTTP2中
同域名下所有通信都在单个连接上完成,消除了因多个 TCP 连接而带来的延时和内存消耗。
单个连接上可以并行交错的请求和响应,之间互不干扰
在客户端发送数据之前会发起 TCP 三次握手用以同步客户端和服务端的序列号和确认号,并交换 TCP 窗口大小信息。
1.TCP 三次握手的过程如下:
客户端发送一个带 SYN=1,Seq=X 的数据包到服务器端口(第一次握手,由浏览器发起,告诉服务器我要发送请求了)服务器发回一个带 SYN=1, ACK=X+1, Seq=Y 的响应包以示传达确认信息(第二次握手,由服务器发起,告诉浏览器我准备接受了,你赶紧发送吧)客户端再回传一个带 ACK=Y+1, Seq=Z 的数据包,代表“握手结束”(第三次握手,由浏览器发送,告诉服务器,我马上就发了,准备接受吧)
2.为啥需要三次握手
谢希仁著《计算机网络》中讲“三次握手”的目的是“为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误”。
当数据传送完毕,需要断开 tcp 连接,此时发起 tcp 四次挥手。
发起方向被动方发送报文,Fin、Ack、Seq,表示已经没有数据传输了。并进入 FIN_WAIT_1 状态。(第一次挥手:由浏览器发起的,发送给服务器,我请求报文发送完了,你准备关闭吧)
被动方发送报文,Ack、Seq,表示同意关闭请求。此时主机发起方进入 FIN_WAIT_2 状态。(第二次挥手:由服务器发起的,告诉浏览器,我请求报文接受完了,我准备关闭了,你也准备吧)
被动方向发起方发送报文段,Fin、Ack、Seq,请求关闭连接。并进入 LAST_ACK 状态。(第三次挥手:由服务器发起,告诉浏览器,我响应报文发送完了,你准备关闭吧)
发起方向被动方发送报文段,Ack、Seq。然后进入等待 TIME_WAIT 状态。被动方收到发起方的报文段以后关闭连接。发起方等待一定时间未收到回复,则正常关闭。(第四次挥手:由浏览器发起,告诉服务器,我响应报文接受完了,我准备关闭了,你也准备吧)
如果A 与 B 建立了正常连接后,从未相互发过数据,这个时候 B 突然机器重启,问 A 此时处于 TCP 什么状态?如何消除服务器程序中的这个状态?(超纲题,了解即可)
因为B会在重启之后进入tcp状态机的listen状态,只要当a重新发送一个数据包(无论是syn包或者是应用数据),b端应该会主动发送一个带rst位的重置包来进行连接重置,所以a应该在syn_sent状态
在React中,如果是由React引发的事件处理(比如通过onClick引发的事件处理),调用setState不会同步更新this.state,除此之外的setState调用会同步执行this.state。所谓“除此之外”,指的是绕过React通过addEventListener直接添加的事件处理函数,还有通过setTimeout/setInterval产生的异步调用。
**原因:**在React的setState函数实现中,会根据一个变量isBatchingUpdates判断是直接更新this.state还是放到队列中回头再说,而isBatchingUpdates默认是false,也就表示setState会同步更新this.state,但是,有一个函数batchedUpdates,这个函数会把isBatchingUpdates修改为true,而当React在调用事件处理函数之前就会调用这个batchedUpdates,造成的后果,就是由React控制的事件处理过程setState不会同步更新this.state。
class Example extends React.Component {
constructor() {
super();
this.state = {
val: 0
};
}
componentDidMount() {
this.setState({val: this.state.val + 1});
console.log(this.state.val); // 第 1 次 log
this.setState({val: this.state.val + 1});
console.log(this.state.val); // 第 2 次 log
setTimeout(() => {
this.setState({val: this.state.val + 1});
console.log(this.state.val); // 第 3 次 log
this.setState({val: this.state.val + 1});
console.log(this.state.val); // 第 4 次 log
}, 0);
}
render() {
return null;
}
};
1、第一次和第二次都是在 react 自身生命周期内,触发时 isBatchingUpdates 为 true,所以并不会直接执行更新 state,而是加入了 dirtyComponents,所以打印时获取的都是更新前的状态 0。
2、两次 setState 时,获取到 this.state.val 都是 0,所以执行时都是将 0 设置成 1,在 react 内部会被合并掉,只执行一次。设置完成后 state.val 值为 1。
3、setTimeout 中的代码,触发时 isBatchingUpdates 为 false,所以能够直接进行更新,所以连着输出 2,3。
输出: 0 0 2 3
执行工程自身 preinstall
当前 npm 工程如果定义了 preinstall 钩子此时会被执行。
确定首层依赖模块
首先需要做的是确定工程中的首层依赖,也就是 dependencies 和 devDependencies 属性中直接指定的模块(假设此时没有添加 npm install 参数)。
工程本身是整棵依赖树的根节点,每个首层依赖模块都是根节点下面的一棵子树,npm 会开启多进程从每个首层依赖模块开始逐步寻找更深层级的节点。
获取模块
获取模块是一个递归的过程,分为以下几步:
获取模块信息。在下载一个模块之前,首先要确定其版本,这是因为 package.json 中往往是 semantic version(semver,语义化版本)。此时如果版本描述文件(npm-shrinkwrap.json 或 package-lock.json)中有该模块信息直接拿即可,如果没有则从仓库获取。如 packaeg.json 中某个包的版本是 ^1.1.0,npm 就会去仓库中获取符合 1.x.x 形式的最新版本。
获取模块实体。上一步会获取到模块的压缩包地址(resolved 字段),npm 会用此地址检查本地缓存,缓存中有就直接拿,如果没有则从仓库下载。
查找该模块依赖,如果有依赖则回到第1步,如果没有则停止。
模块扁平化(dedupe)
上一步获取到的是一棵完整的依赖树,其中可能包含大量重复模块。比如 A 模块依赖于 loadsh,B 模块同样依赖于 lodash。在 npm3 以前会严格按照依赖树的结构进行安装,因此会造成模块冗余。
从 npm3 开始默认加入了一个 dedupe 的过程。它会遍历所有节点,逐个将模块放在根节点下面,也就是 node-modules 的第一层。当发现有重复模块时,则将其丢弃。
这里需要对重复模块进行一个定义,它指的是模块名相同且 semver 兼容。每个 semver 都对应一段版本允许范围,如果两个模块的版本允许范围存在交集,那么就可以得到一个兼容版本,而不必版本号完全一致,这可以使更多冗余模块在 dedupe 过程中被去掉。
比如 node-modules 下 foo 模块依赖 lodash@^1.0.0,bar 模块依赖 lodash@^1.1.0,则 ^1.1.0 为兼容版本。
而当 foo 依赖 lodash@^2.0.0,bar 依赖 lodash@^1.1.0,则依据 semver 的规则,二者不存在兼容版本。会将一个版本放在 node_modules 中,另一个仍保留在依赖树里。
举个例子,假设一个依赖树原本是这样:
node_modules
– foo
---- lodash@version1
– bar
---- lodash@version2
假设 version1 和 version2 是兼容版本,则经过 dedupe 会成为下面的形式:
node_modules
– foo
– bar
– lodash(保留的版本为兼容版本)
假设 version1 和 version2 为非兼容版本,则后面的版本保留在依赖树中:
node_modules
– foo
– lodash@version1
– bar
---- lodash@version2
安装模块
这一步将会更新工程中的 node_modules,并执行模块中的生命周期函数(按照 preinstall、install、postinstall 的顺序)。
执行工程自身生命周期
当前 npm 工程如果定义了钩子此时会被执行(按照 install、postinstall、prepublish、prepare 的顺序)。
最后一步是生成或更新版本描述文件,npm install 过程完成。