leetcode--62. Unique Paths

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:

Input: m = 7, n = 3
Output: 28

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

 

我的思路:

1. dp[i][j]表示到 第i行第j列的格子有多少种走法

2. 边界:因为只能向左或者向右走,第1行第一列都只有一种走法

3. dp[i][j] = dp[i-1][j] + dp[i][j-1],第i行第j列的格子的走法为上一行此列或上一列此行的走法个数的和

 

AC:

class Solution {
public:
    int uniquePaths(int m, int n) {
        int dp[n][m];
        for(int i = 0; i < n; i++){
            dp[i][0] = 1;
        }
        for(int i = 0; i < m; i++){
            dp[0][i] = 1;
        }
        for(int i = 1; i < n; i++){
            for(int j = 1; j < m; j++){
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[n-1][m-1];
    }
};

 

你可能感兴趣的:(反复看,leetCode)