- 《度五行》生活报报甲午62:不通痛苦,太通也痛苦,要健康快乐,需要通体舒畅。
YangduSam2021
220809壬寅戊申甲午,《度.生活五行》:天干土克水,水生木,木克土。地支寅申冲,寅午合。20220809,周二,兴大上海六班2512天,西交大2013上海班3212天,后TA15332天,度生活619天,今天拜访了一家有趣且当红产业的新创公司AK。AK一开始从事深海新能源储存与供电设备的研发生产制造,2年前开始做移动与家庭储能设备的研发生产制造。觉得有趣是因为这是笔者认知里用科技做降维打击的公
- 机器学习 流形数据降维:UMAP 降维算法
小嗷犬
Python机器学习#数据分析及可视化机器学习算法人工智能
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。个人主页:小嗷犬的个人主页个人网站:小嗷犬的技术小站个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。本文目录UMAP简介理论基础特点与优势应用场景在Python中使用UMAP安装umap-learn库使用UMAP可视化手写数字数据集UMAP简介UMAP(UniformManifoldApproximatio
- 用了这么多年的PCA可视化竟然是错的!!!
生信宝典
本文启发于上周开的单细胞转录组课程,本次课程由资深单细胞算法研究者戴老师主讲,深入浅出,各部分分析原理从理论到应用层面解释透彻,最新流程,最新代码,绝对值得学习。课程尚未结束,我就迫不及待向一位未能安排出时间参加此课程的老友及时安利了视频课。言归正传,介绍培训课程的一张幻灯片:很多PCA可视化结果都是不合适的。PCA或PCoA是常用的降维工具,之前有几篇文章介绍PCA的原理和可视化。一文看懂PCA
- 三点or多点的变换矩阵求解opencv & eigen
合工大机器人实验室
C++矩阵opencv线性代数
《Estimating3-DRigidBodyTransformations:AComparisonofFourMajorAlgorithms》,它使用SVD方法计算T和t。只要算出变换矩阵,就可以算出A坐标系的一个点P在坐标系B里的对应点坐标,即R为3x3的转换矩阵,t为3x1的位移变换向量,这里点坐标均为3x1的列向量(非齐次形式,齐次形式下为4x1列向量,多出的一个元素值补1而已)。理论上只
- 【机器学习】必会降维算法之:奇异值分解(SVD)
Carl_奕然
机器学习算法人工智能
奇异值分解(SVD)1、引言2、奇异值分解(SVD)2.1定义2.2应用场景2.3核心原理2.4算法公式2.5代码示例3、总结1、引言一转眼,小屌丝:鱼哥,就要到每年最开心的节日了:六一儿童节。小鱼:你有啥想法?小屌丝:想法没有,玩的地方倒是想小鱼:拉倒吧,我可不去小屌丝:确定?小鱼:看情况。小屌丝:嘿嘿,难得过节日,我们也得放松一下小鱼:正有此意。2、奇异值分解(SVD)2.1定义奇异值分解(S
- 使用SVD将图像压缩四分之一(MATLAB)
superdont
matlab开发语言
SVD压缩前后数据量减少的原因在于,通过奇异值分解(SVD),我们将原始数据(如图像)转换成了一种更加紧凑的表示形式。这种转换依赖于数据内部的结构和相关性,以及数据中信息的不均匀分布。让我们简单分析一下这个过程为何能减少所需的数据量:数据的结构和相关性高度相关的数据:图像数据往往包含大量的空间相关性,即图像中相邻的像素点在颜色和亮度上通常非常接近。这种高度的相关性意味着原始图像可以通过更少的信息来
- 【图像压缩】奇异值分解SVD灰色图像压缩(可设置压缩比)【含Matlab源码 4358期】
Matlab武动乾坤
Matlab图像处理(进阶版)matlab
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。个人主页:海神之光代码获取方式:海神之光Matlab王者学习之路—代码获取方式⛳️座右铭:行百里者,半于九十。更多Matlab仿真内容点击Matlab图像处理(进阶版)路径规划(Matlab)神经网络预测与分类(Matlab)优化求解(Matlab)语音处理(Matlab)信号处理(Matlab)车间调度
- 363. 矩形区域不超过 K 的最大数值和(C语言实现)
Buaaer(>ω<)
算法学习-Leetcode动态规划算法二分查找
文章目录363.矩形区域不超过K的最大数值和题干声明方法1-暴力枚举+简单dp方法2-暴力枚举+二维数组前缀和方法3-固定边界搜索方法4-固定边界搜索+dp优化方法5-固定边界搜索+前缀和+二分查找363.矩形区域不超过K的最大数值和本题涉及内容:一/二维前缀和问题、降维问题、暴力枚举问题、dp问题、二分查找问题题干给你一个m∗nm*nm∗n的矩阵matrixmatrixmatrix和一个整数kk
- 线性判别分析 (Linear Discriminant Analysis, LDA)
ALGORITHM LOL
人工智能机器学习算法
线性判别分析(LinearDiscriminantAnalysis,LDA)通俗易懂算法线性判别分析(LinearDiscriminantAnalysis,LDA)是一种用于分类和降维的技术。其主要目的是找到一个线性变换,将数据投影到一个低维空间,使得在这个新空间中,不同类别的数据能够更好地分离。线性判别分析的核心思想LDA的基本思路是最大化类间方差(between-classvariance)与
- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 保研 比赛 利器: 用AI比赛助手降维打击数学建模
好家伙VCC
杂谈杂谈数学建模人工智能
数学建模作为一个热门但又具有挑战性的赛道,在保研、学分加分、简历增色等方面具有独特优势。近年来,随着AI技术的发展,特别是像GPT-4模型的应用,数学建模的比赛变得不再那么“艰深”。通过利用AI比赛助手,不仅可以大大提升团队效率,还能有效提高比赛获奖几率。本文将详细介绍如何通过AI比赛助手完成数学建模比赛,并结合实例展示其强大功能。一、AI比赛助手的引入1.什么是AI比赛助手?AI比赛助手是一种集
- 亦菲喊你来学机器学习(20) --PCA数据降维
方世恩
机器学习人工智能深度学习python算法sklearn
文章目录PCA数据降维一、降维二、优缺点三、参数四、实例应用1.读取文件2.分离特征和目标变量3.使用PCA进行降维4.打印特征所占百分比和具体比例5.PCA降维后的数据6.划分数据集7.训练逻辑回归模型8.评估模型性能总结PCA数据降维主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的数据降维技术,它可以在保留数据集中最重要的特征的同时,减少数据的维度。PCA
- 线性代数基础
wq_151
mathematic线性代数
Base对于矩阵A,对齐做SVD分解,即UΣV=svd(A)U\SigmaV=svd(A)UΣV=svd(A).其中U为AATAA^TAAT的特征向量,V为ATAA^TAATA的特征向量。Σ\SigmaΣ的对角元素为降序排序的特征值。显然,U、V矩阵中的列向量相互正交,所以也可以视V为svd分解给出了A的列向量空间的正交基,其中最大奇异值(或特征值)对应的特征向量捕捉了数据变化的最大方向。求满足A
- r语言做绘制精美pcoa图_R语言高级绘图 — ggplot2
weixin_39560002
r语言做绘制精美pcoa图
2)PCA的作图PCA主成分分析,可以将高维数据进行降维处理。我们的OTU表格就是典型的高维数据,可以对其进行降维处理得到主成分PC1和PC2,然后将所有样品都分解到这两个成分方向,进行散点绘图,可以直观的看出样品间的差异。首先需要一系列的统计处理,然后用ggplot2进行绘图,过程如下:#加载需要的三个包(需要先下载,再加载)>library(ade4)>library(ggplot2)>lib
- Java中的数据降维技术:如何实现PCA和t-SNE
省赚客app开发者
javapython人工智能
Java中的数据降维技术:如何实现PCA和t-SNE大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在这篇文章中,我们将探讨如何在Java中实现数据降维技术,特别是主成分分析(PCA)和t-SNE。这两种技术在数据预处理和可视化中非常重要,它们帮助我们将高维数据转换为低维数据,保留数据的主要特征。主成分分析(PCA)主成分分析(PCA)是一种线性降维技术,用于将数据从
- 工信教考 | AI智能体应用工程师(模拟试题)
人工智能-猫猫
人工智能开源自然语言处理语言模型架构
关于AI智能体工程师的模拟试题,下面根据AI智能体工程师所需掌握的知识和技能,设计一些模拟题型的示例。这些题目旨在考察应试者在人工智能、机器学习、深度学习、算法设计、系统开发等方面的能力。一、选择题无监督学习常用于哪些任务?(单选)A.回归分析B.聚类分析C.分类预测D.序列预测答案:B解析:无监督学习常用于聚类、降维、异常检测等任务,如市场分割、数据可视化等。以下哪种激活函数常用于分类问题的输出
- 3D 场景模拟 2D 碰撞玩法的方案
长脖鹿Johnny
数学算法3d游戏游戏引擎算法几何学
目录方法概述顶点到平面的垂直投影求解最小降维OBB主成分分析(PCA)协方差矩阵求矩阵特征值Jacobi方法OBB拉伸方法对于类似《密特罗德生存恐惧》和《暗影火炬城》这样3D场景,但玩法还是2D卷轴动作平台跳跃(类银河恶魔城)的游戏,如果想要让碰撞检测更符合视觉直觉,需要采用3D碰撞体来模拟2D碰撞。本文将介绍一种实现方案。方法概述为了简化碰撞计算,原碰撞体(如武器的碰撞)只使用长方体(OBB)和
- 2024 数学建模国赛 C 题模型及算法(无废话版)
不染53
数学建模数学建模算法python
目录写在开始需要掌握的数学模型/算法评价体系/评价类问题时间序列处理数据降维聚类问题(无监督)分类问题(有监督)集成学习(Bagging/Boosting)回归问题关联分析统计学方法/统计模型智能优化算法需要掌握的Python专业库需要掌握的软件/工具写在开始本人获2023年数学建模国赛C题国家级一等奖,备赛期间专攻C题。本文总结了在备赛期间总结的模型和算法,足以应对90%国赛C题中涉及到的问题。
- 看demo学算法之 自编码器
小琳ai
算法
大家好,这里是小琳AI课堂!今天我们来聊聊自编码器。AE自编码器,全称为Autoencoder,是一种数据压缩算法,它能够通过学习输入数据的有效表示(编码)来重建输入数据(解码)。自编码器通常被用于无监督学习任务,尤其是在降维、特征学习、数据去噪等领域。下面,我将从四个不同的角度来详细解释AE自编码器。1.技术细节自编码器由两部分组成:编码器(encoder)和解码器(decoder)。编码器负责
- 6月第11编
我是何何子吖
我最终还是爱上了董宇辉的直播间,然后发现自己更应该多读点书了,小时候词不达意,长大以后是言不由衷,老师转型带货,都说是降维打,没有声嘶力歇的抢单限购,有的只是古今中外的历史穿越,浩瀚星辰、人间烟火,岁月静好。离群索居者,不是神明,便是野兽,但是我贪心,我贪恋这人间的烟火气。所以我决定留下来,于时间无涯的荒漠里,正好遇见你,轻声地说一句,哦,原来你也在这里。生活里我们该有的样子,健健康康,快快乐乐,
- 计算机毕业设计hadoop+spark知识图谱房源推荐系统 房价预测系统 房源数据分析 房源可视化 房源大数据大屏 大数据毕业设计 机器学习
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集链家数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartssparkmys
- 【Python机器学习】NLP词频背后的含义——隐性语义分析
zhangbin_237
Python机器学习python机器学习自然语言处理人工智能开发语言
隐性语义分析基于最古老和最常用的降维技术——奇异值分解(SVD)。SVD将一个矩阵分解成3个方阵,其中一个是对角矩阵。SVD的一个应用是求逆矩阵。一个矩阵可以分解成3个最简单的方阵,然后对这些方阵求转置后再把它们相乘,就得到了原始矩阵的逆矩阵。它为我们提供了一个对大型复杂矩阵求逆的捷径。SVD适用于桁架结构的应力和应变分析等机械工程问题,它对电气工程中的电路分析也很有用,它甚至在数据科学中被用于基
- 【深度学习】embedding的简单理解
旅途中的宽~
深度学习笔记深度学习embedding
文章目录一、简单理解二、其他通俗理解一、简单理解特征嵌入,将数据转换(降维)为固定大小的特征表示(矢量),以便于处理和计算(如求距离)。例如,针对用于说话者识别的语音信号训练的模型可以允许您将语音片段转换为数字向量,使得来自相同说话者的另一片段与原始向量具有小的距离(例如,欧几里德距离)。embedding的主要目的是对(稀疏)特征进行降维,它降维的方式可以类比为一个全连接层(没有激活函数),通过
- Python实现等距映射(ISOMAP)降维算法
闲人编程
pythonpython算法开发语言ISOMAP降维
目录Python实现等距映射(ISOMAP)降维算法的博客引言ISOMAP算法原理ISOMAP的优势与局限Python实现ISOMAP算法1.创建ISOMAP类2.在瑞士卷数据集上应用ISOMAP3.结果分析总结运行结果Python实现等距映射(ISOMAP)降维算法的博客引言在高维数据处理中,降维是一种常用的技术,它通过减少数据的维度来降低计算复杂度,同时保留数据的主要特征。在许多情况下,数据可
- 斗胆谈一谈大学对成长的思考 上篇
无道无名
为了有一个提纲的作用,我还是做一个简单的导图。嗯确实是简单。我不知道一般人上大学的时候是怎么想的,我也忘了我当日是怎么想的。所以,我们就直接进入主题吧。谈一谈我的想法。认知升维的能力我们之前看《三体》的时候,知道有一个notion叫做降维打击。它指的是攻击目标本身所处的空间维度使其降低,让目标无法在低维度空间中生存从而毁灭目标。而当它引入社会商业领域时,则代表某一方对有着全方位的碾压,所拥有技术或
- 深度学习100问7-向量降维的算法有那些
不断持续学习ing
深度学习机器学习人工智能
一、主成分分析(PCA)PCA就像你整理一堆考试成绩单。假如成绩单上有好多科目成绩,这就像一个高维向量。但有些科目成绩关系很紧密,比如数学好的同学一般物理也不错,化学也还行。那PCA就会找这些成绩单里最主要的特点,把关系近的科目合成几个新的“大科目”。这样就把原来很多科目的高维向量变成几个“大科目”的低维向量啦。二、奇异值分解(SVD)SVD呢,就好比你有一本很厚的书。书的每一页上的字可以看成一个
- 向量数据库入坑:传统文本检索方式的降维打击,使用 Faiss 实现向量语义检索
soulteary
为了不折腾而去折腾的那些事faiss向量检索语义检索文本检索搜索引擎
在上一篇文章《聊聊来自元宇宙大厂Meta的相似度检索技术Faiss》中,我们有聊到如何快速入门向量检索技术,借助MetaAI(FacebookResearch)出品的faiss实现“最基础的文本内容相似度检索工具”,初步接触到了“语义检索”这种对于传统文本检索方式具备“降维打击”的新兴技术手段。有朋友在聊天中提到,希望能够聊点更具体的,比如基于向量技术实现的语义检索到底比传统文本检索强多少,以及是
- 【机器学习】初学者经典案例(随记)
听忆.
机器学习人工智能数据挖掘深度学习语言模型
边走、边悟迟早会好一、概念机器学习是一种利用数据来改进模型性能的计算方法,属于人工智能的一个分支。它旨在让计算机系统通过经验自动改进,而不需要明确编程。类型监督学习:使用带标签的数据进行训练,包括分类(如垃圾邮件检测)和回归(如房价预测)。无监督学习:使用不带标签的数据进行训练,包括聚类(如客户细分)和降维(如主成分分析)。强化学习:通过与环境的交互学习策略,以最大化累积奖励(如AlphaGo)。
- 【机器学习】特征提取 特征降维
de-feedback
机器学习人工智能
特征工程特征工程是将原始数据转化为可以用于机器学习的数字特征,比如字典的特征提取,文档的特征提取等。字典特征提取把字典的每个唯一的键作为数据集特征的一个维度,有这个维度的就为1,没有就是0。其他相同的键,该维度的值就是其键值。这样的操作把字典样本的每一条数据转化为了矩阵,但是矩阵中含有大量的0(因为数据中的键和值有很多不同),所以称之为稀疏矩阵为了保存数据的高效,一般使用三元组表存储。保存非零数据
- 主成分分析(PCA)附Python实现
不染53
数学建模数学建模python算法
主成分分析矩阵分解特征值和特征向量特征值分解奇异值分解主成分分析(PCA)Python实现主成分分析方法(PrincipalComponentAnalysis,PCA)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,将多个变量压缩为少数几个综合指标(称为主成分),是一种使用最广泛的数据降维算法。此外,由于主成分分析独特的性质,压缩之后的主成分之间线性无关,因此
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s