问题描述: 用1 * 1, 1 * 2的矩形覆盖一个n行m列的矩形,问有多少种方法。
数据范围 : n [1..10^6], m [ 1..7]
要求复杂度: 时间 O(log(n) * 8 ^m)) 空间 O(4^m)
分析:这个题跟之前那个木块砌墙问题一样…… 稍作修改即可,又是矩阵乘法。
http://blog.csdn.net/caopengcs/article/details/9928061
代码:
// you can also use includes, for example: // #include <algorithm> #include <vector> vector<vector<int> > a; const int MOD = 10000007; int add(int x,int y) { return ((x += y) >= MOD)?(x - MOD):x; } int mul(long long x,long long y) { return x * y % MOD; } vector<vector<int> > mulmatrix(vector<vector<int> > &a,vector<vector<int> > &b) { vector<vector<int> > c; int n = a.size(), i ,j, k; c.resize(n); for (i = 0; i < n; ++i) { c[i].resize(n , 0); for (j = 0; j < n; ++j) { for (k = 0; k < n; ++k) { c[i][j] = add(c[i][j], mul(a[i][k],b[k][j])); } } } return c; } void count(int col, int n, int last, int now) { if (col >= n) { ++a[last][now]; return; } count(col + 1, n, last, now); if (((last & (1 << col)) == 0) && (col + 1 < n) && ((last & (1 << (col + 1))) == 0)) { count(col + 2, n, last, now | (3 << col)); } } int solution(int N, int M) { // write your code here... int i,total = 1 << M; vector<vector<int> > r; a.resize(total); r.resize(total); for (i = 0; i < total; ++i) { a[i].resize(total, 0); count(0, M, i, 0); r[i].resize(total, 0); r[i][i] = 1; } for (; N ; N >>= 1) { if (N & 1) { r = mulmatrix(r, a); } a = mulmatrix(a, a); } return r[0][0]; }