从源代码安装 rocSOLVER 并 调试 rocSOLVER 在 Ubuntu 22.04 平台

0, 下载并编译 rocBLAS 的调试版本

sudo apt install python3.10-venv
sudo apt install libmsgpack-dev
sudo pip install joblib

git clone --recursive  https://github.com/ROCm/rocBLAS.git
$ cd rocBLAS/
$ ./install.sh -i -g

构建时间也不短

        

1,下载并编译 rocSolver 的调试版本

git clone --recursive [email protected]:ROCm/rocSOLVER.git
cd rocSOLVER/
~/ex_rocm/rocSOLVER$ ./install.sh -i -g   --install_dir ../local/  --rocblas_dir /opt/rocm/lib

这个编译时间真的长,3个小时的样子,主要是99%后花了两个小时多,跟计算机性能关系不大。

2,编译app源代码

ex_rocsolver_dgeqrf.cpp

/
// example.cpp source code //
/
 
#include  // for std::min
#include   // for size_t
#include 
#include 
#include  // for hip functions
#include  // for all the rocsolver C interfaces and type declarations
 
void init_vector(double* A, int n)
{
  for(int i=0; i hA(size_A);      // creates array for matrix in CPU
  std::vector hIpiv(size_piv); // creates array for householder scalars in CPU
 
  init_vector(hA.data(), size_A);
  memset(hIpiv.data(), 0, size_piv*sizeof(double));
 
  print_matrix(hA.data(), M, N, lda);
 
  double *dA, *dIpiv;
  hipMalloc(&dA, sizeof(double)*size_A);      // allocates memory for matrix in GPU
  hipMalloc(&dIpiv, sizeof(double)*size_piv); // allocates memory for scalars in GPU
 
  // here is where you would initialize matrix A (array hA) with input data
  // note: matrices must be stored in column major format,
  //       i.e. entry (i,j) should be accessed by hA[i + j*lda]
 
  // copy data to GPU
  hipMemcpy(dA, hA.data(), sizeof(double)*size_A, hipMemcpyHostToDevice);
  // compute the QR factorization on the GPU
  rocsolver_dgeqrf(handle, M, N, dA, lda, dIpiv);
  // copy the results back to CPU
  hipMemcpy(hA.data(), dA, sizeof(double)*size_A, hipMemcpyDeviceToHost);
  hipMemcpy(hIpiv.data(), dIpiv, sizeof(double)*size_piv, hipMemcpyDeviceToHost);
 
  printf("\nR =\n");
  print_matrix(hA.data(), M, N, lda);
  printf("\ntau=\n");
  print_matrix(hIpiv.data(), 1, N, 1);
 
  // the results are now in hA and hIpiv, so you can use them here
 
  hipFree(dA);                        // de-allocate GPU memory
  hipFree(dIpiv);
  rocblas_destroy_handle(handle);     // destroy handle
}

Makefile

EXE := ex_rocsolver_dgeqrf
 
all: $(EXE)
 
INC :=  -I /home/hipper/ex_rocm/rocSOLVER/build/debug/rocsolver-install/include/rocsolver  -D__HIP_PLATFORM_AMD__
LD_FLAGS := -L /home/hipper/ex_rocm/rocSOLVER/build/debug/rocsolver-install/lib -lamdhip64 -lrocblas -lrocsolver
 
ex_rocsolver_dgeqrf.o: ex_rocsolver_dgeqrf.cpp
        g++ -g $< $(INC) -c -o $@
 
ex_rocsolver_dgeqrf: ex_rocsolver_dgeqrf.o
        g++ -g $< $(LD_FLAGS) -o $@
 
 
.PHONY: clean
clean:
        ${RM} *.o $(EXE)

3,运行调试

export LD_LIBRARY_PATH=/home/hipper/ex_rocm/rocSOLVER/build/debug/rocsolver-install/lib

$ gdb ./ex_rocsolver_dgeqrf

37            ROCSOLVER_LAUNCH_KERNEL(set_diag, dim3(batch_count, 1, 1), dim3(1, 1, 1), 0, stream,
(gdb)
137            ROCSOLVER_LAUNCH_KERNEL(set_diag, dim3(batch_count, 1, 1), dim3(1, 1, 1), 0, stream,
(gdb)
145            if(j < n - 1)
(gdb)
147                rocsolver_larf_template(handle, rocblas_side_left, m - j, n - j - 1, A,
(gdb)
154            ROCSOLVER_LAUNCH_KERNEL(restore_diag, dim3(batch_count, 1, 1), dim3(1, 1, 1), 0, stream,
(gdb)
154            ROCSOLVER_LAUNCH_KERNEL(restore_diag, dim3(batch_count, 1, 1), dim3(1, 1, 1), 0, stream,
(gdb)
129        for(rocblas_int j = 0; j < dim; ++j)
(gdb)
132            rocsolver_larfg_template(handle, m - j, A, shiftA + idx2D(j, j, lda), A,
(gdb)
137            ROCSOLVER_LAUNCH_KERNEL(set_diag, dim3(batch_count, 1, 1), dim3(1, 1, 1), 0, stream,
(gdb)
137            ROCSOLVER_LAUNCH_KERNEL(set_diag, dim3(batch_count, 1, 1), dim3(1, 1, 1), 0, stream,
(gdb)
145            if(j < n - 1)
(gdb)
154            ROCSOLVER_LAUNCH_KERNEL(restore_diag, dim3(batch_count, 1, 1), dim3(1, 1, 1), 0, stream,
(gdb)
154            ROCSOLVER_LAUNCH_KERNEL(restore_diag, dim3(batch_count, 1, 1), dim3(1, 1, 1), 0, stream,
(gdb)
129        for(rocblas_int j = 0; j < dim; ++j)
(gdb)
163    }
(gdb)
rocsolver_geqrf_template (handle=0x55555565ecd0, m=, n=, A=0x7fff09000000, shiftA=0, lda=7, strideA=, ipiv=, strideP=, batch_count=, scalars=, work_workArr=, Abyx_norms_trfact=, diag_tmptr=, workArr=) at /home/hipper/ex_rocm/rocSOLVER/library/src/lapack/roclapack_geqrf.hpp:174
174    }
(gdb)

你可能感兴趣的:(linux,高性能计算,pytorch)