- AI 计算的未来:去中心化浪潮与全球竞争格局重塑
智识微光Intelligence
人工智能机器学习大数据
引言人工智能(AI)正以前所未有的速度发展,尤其是大模型训练和推理效率的提升,使得AI计算成本迅速下降,呈现出向去中心化演进的趋势。最新的DeepSeekr1模型,以仅600万美元的训练成本,达到了OpenAIo1级别的性能,表明AI技术正迈向更具普惠性的阶段。这一趋势不仅对AI产业格局产生深远影响,还将改变计算基础设施、全球科技竞争力分布,甚至可能影响人工超级智能(ASI)的未来发展。因此,AI
- AIGC时代的Vue或React前端开发
GISer_Jinger
JavascriptReactVueAIGCvue.jsreact.js
在AIGC(人工智能生成内容)时代,Vue开发正经历着深刻的变革。以下是对AIGC时代Vue开发的详细分析:一、AIGC技术对Vue开发的影响代码生成与自动化AIGC技术使得开发者能够借助智能工具快速生成和优化Vue代码。例如,通过自然语言处理模型(如ChatGPT),开发者可以描述组件的功能和样式需求,然后自动生成包含模板、脚本和样式的完整组件代码。这不仅大大提高了开发效率,还减少了人为错误的可
- 大模型蒸馏与大模型微调技术有啥差别?
kcarly
大模型知识乱炖杂谈大模型蒸馏大模型微调大模型AI
大模型蒸馏与大模型微调是当前人工智能领域中两种重要的技术手段,它们在模型优化、性能提升和资源利用方面各有特点。以下将从定义、技术原理、应用场景及优缺点等方面对这两种技术进行深入对比。一、定义与基本概念大模型蒸馏(KnowledgeDistillation)蒸馏是一种将大型复杂模型(教师模型)的知识迁移到小型模型(学生模型)的技术。通过训练学生模型模仿教师模型的行为,实现模型压缩和性能保留的目标。蒸
- DeepSeek大模型技术深度解析:揭开Transformer架构的神秘面纱
不一样的信息安全
网络杂烩AIDeepSeek
摘要DeepSeek大模型由北京深度求索人工智能基础技术研究有限公司开发,基于Transformer架构,具备卓越的自然语言理解和生成能力。该模型能够高效处理智能对话、文本生成和语义理解等复杂任务,标志着人工智能在自然语言处理领域的重大进展。关键词DeepSeek模型,Transformer架构,自然语言,智能对话,文本生成,语义理解一、DeepSeek大模型的架构解析1.1DeepSeek大模型
- 《DeepSeek-R1 问世,智能搜索领域迎来新变革》
黑金IT
智能搜索
DeepSeek-R1是由DeepSeek公司开发的一款创新型人工智能模型,自2024年5月7日发布以来,迅速在AI领域引起广泛关注。该模型凭借其卓越的语言理解能力、高效的数据处理能力、自适应学习能力、高安全性与可靠性以及广泛的应用场景与拓展性,在众多人工智能模型中脱颖而出。DeepSeek-R1的核心特点强大的语言理解能力:DeepSeek-R1采用先进的深度学习算法,能够精准解析复杂的语义结构
- matlab的多线程操作
m0_74823044
面试学习路线阿里巴巴资料职业发展matlab单片机开发语言后端
matlab的多线程操作先导知识一、结论二、定时器timer三、多进程操作先导知识听说过:定时器中断、线程、进程知道:matlab的帮助文档使用方式,如:docmemmapfile、helpmemmapfile理解:回调函数,同步回调、异步回调(不知道也没关系,csdn里面很多人都写了这个)一、结论截止到2021a版本,matlab不能实现传统意义的多线程,但是可以实现并行计算(docparall
- 开关电源matlab仿真,用数学方法建立一种开关电源全系统的仿真模型
照月鱼yoyi
开关电源matlab仿真
引言通过数学的方法,把小功率开关电源系统表示成数学模型和非线性控制模型,建立一种开关电源全系统的仿真模型,提高了仿真速度。Matlab是一个高级的数学分析软件,Simulink是运行在Matlab环境下,用于建模、仿真和分析动态系统的软件包,它支持连续、离散及两者混合的线性及非线性系统。在Matlab5.2中推出了电力系统工具箱,该工具箱可以与Simulink配合使用,能够更方便地对电力电子系统进
- 基于麻雀搜索算法SSA求解最优目标
pytorchCode
人工智能python算法Matlab
基于麻雀搜索算法SSA求解最优目标麻雀搜索算法(SparrowSearchAlgorithm,SSA)是一种启发式优化算法,灵感来自于麻雀的群体行为。该算法模拟了麻雀在寻找食物时的搜索过程,通过合作和竞争来找到最佳解决方案。在本文中,我们将介绍如何使用SSA算法来求解最优目标,并提供相应的MATLAB源代码。首先,我们需要定义问题的目标函数。假设我们要求解的目标是最小化一个连续的优化问题。那么,我
- 构建高效LLM应用开发架构的关键策略
AI天才研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
文章标题:构建高效LLM应用开发架构的关键策略在当今快速发展的技术世界中,人工智能(AI)已经成为推动创新的核心动力。其中,大型语言模型(LLM)的应用开发尤为引人注目。LLM通过处理和理解自然语言,为各种场景提供了强大的智能解决方案,从智能客服到内容生成,再到教育应用,都有着广泛的应用前景。然而,高效地构建LLM应用开发架构面临着诸多挑战,包括性能、可扩展性和安全性等。本文将深入探讨构建高效LL
- 第03课:Anaconda 与 Jupyter Notebook
红色石头Will
深度学习PyTorch极简入门人工智能深度学习PyTorch
本文将为大家介绍深度学习实战非常重要的两个工具:Anaconda和JupyterNotebook。Anaconda为什么选择Anaconda我们知道Python是人工智能的首选语言。为了更好、更方便地使用Python来编写深度学习相关程序,可以使用集成开发环境或集成管理系统,最流行的比如PyCharm和Anaconda。本文我推荐使用Anaconda。之所以选择Anaconda,是因为Anacon
- AI大模型在智能客服系统中的应用
季风泯灭的季节
AI大模型应用技术二人工智能
目录引言1.基于大模型的智能客服系统架构2.对话生成与上下文管理对话生成上下文管理3.提高客服系统响应精度的策略1.使用专门训练的数据集2.引入实体识别和意图分类3.反馈循环和持续优化4.AI大模型在企业中的优化与调优策略1.模型微调(Fine-tuning)2.模型蒸馏(ModelDistillation)3.响应延迟优化4.持续监控与反馈结论引言随着人工智能(AI)技术的不断发展,AI大模型在
- 手把手教你学 MATLAB(2.5):编写和调用函数,创建和运行脚本文件
xiaoheshang_123
手把手教你学MATLAB专栏matlab开发语言
目录手把手教你学MATLAB:编写和调用函数,创建和运行脚本文件1.编写和调用函数1.1定义函数1.1.1示例:定义一个简单的函数1.2保存函数1.2.1创建addNumbers.m文件1.3调用函数1.3.1示例:调用addNumbers函数2.创建和运行脚本文件2.1创建脚本文件2.1.1示例:创建一个简单的脚本文件2.2运行脚本文件2.2.1在命令窗口中运行脚本文件2.2.2在脚本编辑器中运
- 深度学习(DL/ML)学习路径
jackl的科研日常
深度学习学习人工智能
最近几年,尤其是自从2016年AlphaGo打败李世石事件后,人工智能技术受到了各行业极大关注。其中以机器学习技术中深度学习最受瞩目。主要原因是这些技术在科研领域和工业界的应用效果非常好,大幅提升了算法效率、降低了成本。因而市场对相关技术有了如此大的需求。我在思考传统行业与这些新兴技术结合并转型的过程中,亦系统的回顾了深度学习及其相关技术。本文正是我在学习过程中所作的总结。我将按照我所理解的学习路
- Python从0到100(八十六):神经网络-ShuffleNet通道混合轻量级网络的深入介绍
是Dream呀
Pythonpython神经网络网络
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 机器学习笔记 - 将音频转换为图像进行分类的机器学习模型
坐望云起
深度学习从入门到精通机器学习深度学习语音识别光谱图Whisper
一、简述语音识别技术是将音频信号转化为文本的过程。其基本原理如下:1.音频录制:首先需要对口语发音进行录制,并将其转化为数字形式的音频文件。2.预处理:对音频信号进行预处理,包括去除杂音干扰、增加音频的信噪比以及消除不必要的语音、噪声等。3.特征提取:特征提取是语音信号处理的一个重要部分,通过对音频数据进行分析,提取其中特有的频率、音调、幅度等数学特征,并转化成数字特征。4.模型训练:在特征提取完
- 【人工智能】基于Python的机器翻译系统,从RNN到Transformer的演进与实现
蒙娜丽宁
Python杂谈人工智能人工智能python机器翻译
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界机器翻译(MachineTranslation,MT)作为自然语言处理领域的重要应用之一,近年来受到了广泛的关注。在本篇文章中,我们将详细探讨如何使用Python实现从传统的循环神经网络(RNN)到现代Transformer模型的机器翻译系统。文章将从机
- 备战美赛!2025美赛数学建模C题模拟预测!用于大家练手模拟!
灿灿数模
数学建模
完整的思路代码模型见文末2025美赛数学建模C题模拟题:城市交通拥堵指数的预测与管理策略背景随着全球城市化进程的加快,交通拥堵问题成为城市发展的重要挑战之一。交通拥堵不仅影响居民出行效率,还增加了能源消耗和碳排放。近年来,各大城市开始尝试通过实时数据监控和人工智能技术对交通拥堵进行预测和管理。然而,由于城市交通系统的复杂性,现有方法在实际应用中仍面临诸多挑战。任务作为一名数据分析专家,你的任务是基
- AI计算的未来:中心化与去中心化的博弈
智识微光Intelligence
人工智能去中心化区块链
引言人工智能(AI)技术的迅猛发展正在全球计算格局中。最新发布的DeepSeekr1模型,以远低于传统大模型的成本实现了相当水平的推理能力,甚至能够在工作站上本地运行。一次突破AI计算正在经历从中心化(云计算)到去中心化(本地推理)的重大转变。这种变化不仅影响AI产业的商业模式,还可能构建全球计算基础设施、经济利益格局,并加速人工超级智能(ASI)的到来。因此,本文将探讨人工智能训练成本的降低、推
- 探索未来AI:飞桨大模型套件PaddleFleetX引领技术新高度
窦育培
探索未来AI:飞桨大模型套件PaddleFleetX引领技术新高度PaddleFleetX飞桨大模型开发套件,提供大语言模型、跨模态大模型、生物计算大模型等领域的全流程开发工具链。项目地址:https://gitcode.com/gh_mirrors/pa/PaddleFleetX在人工智能的快速发展中,大模型已经成为推动技术创新的重要力量。如今,我们有幸向您推荐一个全新的开源项目——Paddle
- Cursor 的 AI 模型:代码生成与理解的原理
drebander
AI编程Cursor
引言在当今的软件开发领域,人工智能(AI)正在迅速改变开发者的工作方式。Cursor作为一款智能编程助手,通过集成先进的AI模型,为开发者提供了强大的代码生成、补全和优化功能。Cursor的核心竞争力在于其AI模型的能力,这些模型不仅能够理解代码的上下文,还能生成高质量的代码建议。本文将深入探讨Cursor使用的AI模型(如GPT系列或其他定制模型),并解析这些模型如何理解代码上下文并生成高质量的
- AI对接之对话API对接指南
我码玄黄
AI探索AI工具教你一招人工智能AIAI对接前端
AI对接之对话API对接指南本系列AI的API对接均以DeepSeek为例,其他大模型的对接方式类似。在人工智能领域,对话系统是连接人与机器的重要桥梁。DeepSeekAPI提供了一个强大的对话补全功能,使得开发者能够轻松地将智能对话集成到自己的应用中。本文将详细介绍如何对接DeepSeek的对话补全API,并展示几种典型的使用形式。1.API概览DeepSeek的对话补全API通过一个POST请
- AI人工智能代理工作流 AI Agent WorkFlow:在物流与供应链中的应用
AI架构设计之禅
大数据AI人工智能AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:在物流与供应链中的应用1.背景介绍1.1物流与供应链行业面临的挑战物流与供应链行业是现代经济的重要组成部分,涉及原材料采购、产品生产、仓储配送、销售等多个环节。随着全球化进程加快,供应链日益复杂,企业面临着成本控制、效率提升、风险管理等诸多挑战。传统的物流与供应链管理模式已难以适应市场变化,亟需引入新技术和创新方法。1.2人工智能在物流供应链中
- 强化学习在自动驾驶中的实现与挑战
Echo_Wish
人工智能前沿技术自动驾驶人工智能机器学习
强化学习在自动驾驶中的实现与挑战自动驾驶技术作为当今人工智能领域的前沿之一,正通过各种方式改变我们的出行方式。而强化学习(ReinforcementLearning,RL),作为机器学习的一大分支,在自动驾驶的实现中扮演了至关重要的角色。它通过模仿人类驾驶员的决策过程,为车辆提供动态、灵活的导航与控制能力。然而,强化学习在实际应用中并非一帆风顺,还面临着诸多技术和现实挑战。本文将从原理、实现与挑战
- 方波的傅里叶变换及方波的MATLAB实现
xrgs_shz
matlab开发语言
一、傅里叶变换简介傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。傅里叶变换是一种线性的积分变换。它的理论依据是:任何连续周期信号都可以由一组适当的正弦曲线组合而成,即使用简单的正弦、余弦函数,可以拟合复杂函数。为什么要进行傅里叶变换?傅里叶变换是一种数学工具,能够将时域信号转换为频域信号。具体来说,傅里叶变换将时域波形信号转换为离散的频
- AI:263-强化学习在自动驾驶领域的应用与前沿挑战
一键难忘
精通AI实战千例专栏合集自动驾驶汽车强化学习人工智能
强化学习在自动驾驶中的应用与挑战自动驾驶汽车是当前人工智能和机器学习的热门研究方向,而强化学习(ReinforcementLearning,RL)因其在复杂动态环境中的决策能力,成为推动自动驾驶技术的重要工具。本文将探讨强化学习在自动驾驶中的应用、面临的挑战,并提供一个简单的代码实例以展示如何在自动驾驶中应用强化学习。1.强化学习的基础概念强化学习是一种通过试错的方式来学习最佳策略的机器学习方法。
- 强化学习在自动驾驶技术中的应用与挑战
电气_空空
自动驾驶人工智能机器学习
摘要:围绕强化学习在自动驾驶领域的应用进行了多方面的概括和总结。对强化学习原理及发展历程进行了介绍;系统介绍了自动驾驶技术体系以及强化学习在自动驾驶领域的应用所需的基础;按不同的应用方向分别介绍了强化学习在自动驾驶领域中的应用案例;深入分析了现阶段强化学习在自动驾驶领域存在的挑战,并提出若干展望。关键词:强化学习;自动驾驶;人工智能近年来,人工智能在各个领域得到了广泛应用。其快速发展为智能交通系统
- 强化学习:在无人驾驶中的应用
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
强化学习:在无人驾驶中的应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着科技的飞速发展,无人驾驶技术逐渐成为汽车工业和人工智能领域的热点。无人驾驶汽车被认为是未来交通系统的重要组成部分,它能够提高道路安全性、缓解交通拥堵、降低环境污染等。然而,实现无人驾驶面临着诸多挑战,其中最为关键的是如何让汽车在复杂多变的交通环
- 基于强化学习的自动驾驶决策规划算法
AI天才研究院
LLM大模型落地实战指南AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于强化学习的自动驾驶决策规划算法作者:禅与计算机程序设计艺术1.背景介绍自动驾驶技术是当前人工智能领域最受关注和投入的方向之一。自动驾驶汽车需要在复杂多变的交通环境中做出安全、舒适和高效的决策和行动。传统基于规则和模型的决策规划方法已经难以满足自动驾驶的需求。近年来,基于强化学习的决策规划算法越来越受到关注,它能够在复杂动态环境中学习出高效的决策策略。2.核心概念与联系强化学习是一种通过与环境的
- 原创prompt:员工加班助手
姚瑞南
prompt实战应用案例prompt
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)#Role:员工加班填报助手##Profile:你是一个在公司内部帮助员工填报加班信息、审批的办公室助手,主要任务是通过友好且礼貌的引导员工对话填报加班方式来帮助员工完成加班信息填报
- 深入探讨:如何在Python中使用流式传输技术高效调用大型语言模型
m0_57781768
python语言模型microsoft
深入探讨:如何在Python中使用流式传输技术高效调用大型语言模型在现代人工智能应用中,大型语言模型(LargeLanguageModels,LLM)已经成为了强大的工具,能够生成高质量的自然语言文本,并且被广泛应用于各种任务中,如对话系统、文本生成、内容总结等。然而,如何更加高效地调用这些模型,特别是在实时交互的应用中,往往是开发者面临的挑战。流式传输(Streaming)技术提供了一种解决方案
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p