给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。
你可以按 任何顺序 返回答案。
示例 1:
输入:n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
示例 2:
输入:n = 1, k = 1
输出:[[1]]
如果组合里有 1 ,那么需要在 [2, 3, 4] 里再找 1 个数;
如果组合里有 2 ,那么需要在 [3, 4] 里再找 1个数。
注意:这里不能再考虑 1,因为包含 1 的组合,在第 1 种情况中已经包含。
数据结构: 因为组合的数目不定,故选择链表存储 List<>
注意:
路径
上,因此需要一个表示路径的变量 path,它是一个列表,特别地,path 是一个栈;package leetcodePlan;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.List;
public class P0077 {
public List<List<Integer>> combine(int n, int k) {
List<List<Integer>> res = new ArrayList<>();
if (k <= 0 || n < k) {
return res;
}
// 从 1 开始是题目的设定
Deque<Integer> path = new ArrayDeque<>();
dfs(n, k, 1, path, res);
return res;
}
private void dfs(int n, int k, int begin, Deque<Integer> path, List<List<Integer>> res) {
// 递归终止条件是:path 的长度等于 k
if (path.size() == k) {
res.add(new ArrayList<>(path));
return;
}
// 遍历可能的搜索起点
for (int i = begin; i <= n; i++) {
// 向路径变量里添加一个数
path.addLast(i);
// 下一轮搜索,设置的搜索起点要加 1,因为组合数里不允许出现重复的元素
dfs(n, k, i + 1, path, res);
// 重点理解这里:深度优先遍历有回头的过程,因此递归之前做了什么,递归之后需要做相同操作的逆向操作
path.removeLast();
}
}
}
再如:n = 15 ,k = 4。
可以归纳出:
搜索起点的上界 + 接下来要选择的元素个数 - 1 = n
其中,接下来要选择的元素个数 = k - path.size()
,整理得到:
搜索起点的上界 = n - (k - path.size()) + 1
所以,我们的剪枝过程就是:把 i <= n 改成 i <= n - (k - path.size()) + 1 :
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.List;
public class Solution {
public List<List<Integer>> combine(int n, int k) {
List<List<Integer>> res = new ArrayList<>();
if (k <= 0 || n < k) {
return res;
}
Deque<Integer> path = new ArrayDeque<>();
dfs(n, k, 1, path, res);
return res;
}
private void dfs(int n, int k, int index, Deque<Integer> path, List<List<Integer>> res) {
if (path.size() == k) {
res.add(new ArrayList<>(path));
return;
}
// 只有这里 i <= n - (k - path.size()) + 1 与参考代码 1 不同
for (int i = index; i <= n - (k - path.size()) + 1; i++) {
path.addLast(i);
dfs(n, k, i + 1, path, res);
path.removeLast();
}
}
}