python将csv数据导入neo4j

参考链接:https://github.com/jm199504/Financial-Knowledge-Graphs/tree/master

from pandas import DataFrame
from py2neo import Graph,Node,Relationship,NodeMatcher
import pandas as pd
import numpy as np
import os
# 连接Neo4j数据库
from py2neo import Graph, Node, Relationship, walk, NodeMatcher, RelationshipMatcher
import pandas as pd
import json
# 连接数据库 输入地址、用户名、密码
from py2neo import Graph

# 使用包含用户名和密码的 URI 连接到数据库
uri = "http://neo4j:neo4j@localhost:7474"
graph = Graph(uri)
a = Node('Person',name='Tom')
graph.create(a)
b = Node('Person',name='Bob')
graph.create(b)

# 创建关系例子
r = Relationship(a,'KNOWS',b)
graph.create(r)

# 读取节点信息
node = DataFrame(graph.run('MATCH (n:`Person`) RETURN n LIMIT 25'))
# print(node)

# 读取关系信息
relation = DataFrame(graph.run('MATCH (n:`Person`)-[r]->(m:`Person`) return n,m,type(r)'))
# print(relation)

# 删除所有节点
graph.run('MATCH (n) OPTIONAL MATCH (n)-[r]-() DELETE n,r')

(No data)

# 读取数据
stock = pd.read_csv('stock_basic.csv',encoding="gbk")
holder = pd.read_csv('stock_holders.csv',encoding="gbk")
concept_num = pd.read_csv('concept.csv',encoding="gbk")
concept = pd.read_csv('stock_concept.csv',encoding="gbk")
sh = pd.read_csv('sh.csv')
sz = pd.read_csv('sz.csv')
corr = pd.read_csv('corr.csv')
stock.head()
Unnamed: 0 TS代码 股票代码 股票名称 行业
0 0 000001.SZ 1 平安银行 银行
1 1 000002.SZ 2 万科A 全国地产
2 2 000004.SZ 4 国华网安 互联网
3 3 000005.SZ 5 世纪星源 环境保护
4 4 000006.SZ 6 深振业A 区域地产
holder.head()
Unnamed: 0 ts_code ann_date end_date holder_name hold_amount hold_ratio
0 0 000001.SZ 20190307 20181231 新华人寿保险股份有限公司-分红-个人分红-018L-FH002深 4.960350e+07 0.29
1 1 000001.SZ 20190307 20181231 中国平安保险(集团)股份有限公司-集团本级-自有资金 8.510493e+09 49.56
2 2 000001.SZ 20190307 20181231 中国平安人寿保险股份有限公司-自有资金 1.049463e+09 6.11
3 3 000001.SZ 20190307 20181231 香港中央结算有限公司(陆股通) 4.307515e+08 2.51
4 4 000001.SZ 20190307 20181231 中国证券金融股份有限公司 4.292327e+08 2.50
concept_num.head()
Unnamed: 0 code name src
0 0 TS0 密集调研 ts
1 1 TS1 南北船合并 ts
2 2 TS2 5G ts
3 3 TS3 机场 ts
4 4 TS4 高价股 ts
concept.head()
Unnamed: 0 id concept_name ts_code name
0 0 TS0 密集调研 000301.SZ 东方盛虹
1 1 TS0 密集调研 000401.SZ 冀东水泥
2 2 TS0 密集调研 000932.SZ 华菱钢铁
3 3 TS0 密集调研 002013.SZ 中航机电
4 4 TS0 密集调研 002106.SZ 莱宝高科
sh.head()
ts_code hs_type in_date out_date is_new
0 601628.SH SH 20141117 NaN 1
1 601099.SH SH 20141117 NaN 1
2 601808.SH SH 20141117 NaN 1
3 601107.SH SH 20141117 NaN 1
4 601880.SH SH 20141117 NaN 1
sz.head()
ts_code hs_type in_date out_date is_new
0 002910.SZ SZ 20171114 NaN 1
1 000016.SZ SZ 20180102 NaN 1
2 001872.SZ SZ 20180102 NaN 1
3 000040.SZ SZ 20180102 NaN 1
4 000401.SZ SZ 20180102 NaN 1
corr.head()
Unnamed: 0 s1 s2 corr
0 0 000001.SZ. 000001.SZ. 1.000000
1 1 000001.SZ. 000002.SZ. 0.648945
2 2 000001.SZ. 000005.SZ. 0.342920
3 3 000001.SZ. 000009.SZ. 0.297213
4 4 000001.SZ. 000010.SZ. 0.186165
# 数据预处理
stock['行业'] = stock['行业'].fillna('未知')
holder = holder.drop_duplicates(subset=None, keep='first', inplace=False)
# 创建实体(概念、股票、股东、股通)

sz = Node('深股通',名字='深股通')
graph.create(sz)  
 
sh = Node('沪股通',名字='沪股通')
graph.create(sh)  

for i in concept_num.values:
    a = Node('概念',概念代码=i[1],概念名称=i[2])
    # print('概念代码:'+str(i[1]),'概念名称:'+str(i[2]))
    graph.create(a)

for i in stock.values:
    a = Node('股票',TS代码=i[1],股票名称=i[3],行业=i[4])
    # print('TS代码:'+str(i[1]),'股票名称:'+str(i[3]),'行业:'+str(i[4]))
    graph.create(a)

for i in holder.values:
    a = Node('股东',TS代码=i[0],股东名称=i[1],持股数量=i[2],持股比例=i[3])
    # print('TS代码:'+str(i[0]),'股东名称:'+str(i[1]),'持股数量:'+str(i[2]))
    graph.create(a)
# 创建关系(股票-股东、股票-概念、股票-公告、股票-股通)

matcher = NodeMatcher(graph) 
for i in holder.values:    
    a = matcher.match("股票",TS代码=i[0]).first()
    b = matcher.match("股东",TS代码=i[0])
    for j in b:
        r = Relationship(j,'参股',a)
        graph.create(r)
        print('TS',str(i[0]))
            
for i in concept.values:
    a = matcher.match("股票",TS代码=i[3]).first()
    b = matcher.match("概念",概念代码=i[1]).first()
    if a == None or b == None:
        continue
    r = Relationship(a,'概念属于',b)
    graph.create(r) 

你可能感兴趣的:(Neo4J,python,neo4j)