系统:CentOS 6或者RedHat 6(这里用的是64位操作)
软件:JDK 1.7、hadoop-2.3.0、native64位包(可以再csdn上下载,这里不提供了)
192.168.1.11 C6H1 NameNode、DataNode、ResourceManager、NodeManager、JournalNode
192.168.1.12 C6H2 NameNode、DataNode、JournalNode、NodeManager
192.168.1.13 C6H3 DataNode、JourNode、NodeManager
chkconfig iptables off
service iptables stop #关闭防火墙
vi /etc/selinux/config
SELINUX=disabled #注销以前的,添加这个或者直接改。
:wq
setenforce 0 #强制关闭selinux
#设置hosts,每台都设置
vi /etc/hosts
192.168.1.11 C6H1
192.168.1.12 C6H2
192.168.1.13 C6H3
tar –zxvf hadoop-2.3.0.tar.gz –C /usr/local
目录改名为hadoop2
tar –zxvf jdk-1.7.xx.tar.gz –C /usr/src
cd /usr/src
mv /usr/src/jdk-1.7.xx /usr/local/jdk
vi /etc/profile
添加环境变量,这里一次性把所有的环境变量都添加了
export JAVA_HOME=/usr/local/jdk
export ZOOKEEPER_HOME=/usr/local/zk
export HADOOP_HOME=/usr/local/hadoop2
export PATH=.:$JAVA_HOME/bin:$ZOOKEEPER_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
:wq #保存退出
source /etc/profile #立即生效
验证
java –version
java version "1.7.0_51"
Java(TM) SE Runtime Environment (build 1.7.0_51-b13)
Java HotSpot(TM) 64-Bit Server VM (build 24.51-b03, mixed mode)
ssh-keygen –t rsa #生成密钥,一路回车。每台机器上都执行一遍
scp /root/.ssh/id_rsa.pub root@C6H1:/root/C6H2_key #分别将C6H2\C6H3上的公钥传到C6H1中。
在C6H1上操作:
cat /root/.ssh/id_rsa.pub > /root/.ssh/authorized_keys
cat /root/C6H2_key >> /root/.ssh/authorized_keys #>>代表追加,一个>覆盖了内容
cat /root/C6H3_key >> /root/.ssh/authorized_keys
将C6H1中的文件拷贝到C6H2\C6H3机器的/root/.ssh/目录下,这样机器之间免密码可以登陆了。
<configuration>
<!—设置集群的名称 -- >
<property>
<name>fs.defaultFS</name>
<value>hdfs://cluster1</value>
</property>
<! – 设置目录存储的位置,默认namenode、datanode都存储在这里目录下 -- >
<property>
<name>hadoop.tmp.dir</name>
<value>/data/dfs/hadoop</value>
</property>
<property>
</configuration>
<configuration>
<! – 副本数,默认3个 -- >
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<! – 设置集群名称 -- >
<property>
<name>dfs.nameservices</name>
<value>cluster1</value>
</property>
<! – 设置集群中的NameNode节点-- >
<property>
<name>dfs.ha.namenodes.cluster1</name>
<value>C6H1,C6H2</value>
</property>
<! –- 设置集群中的C6H1的namenode的rpc访问地址和端口 -- >
<property>
<name>dfs.namenode.rpc-address.cluster1.C6H1</name>
<value>C6H1:9000</value>
</property>
<! –- 设置集群中的C6H2的namenode的rpc访问地址和端口 -- >
<property>
<name>dfs.namenode.rpc-address.cluster1.C6H2</name>
<value>C6H2:9000</value>
</property>
<! –- 设置集群中的C6H1的namenode的http访问地址和端口 -- >
<property>
<name>dfs.namenode.http-address.cluster1.C6H1</name>
<value>C6H1:50070</value>
</property>
<! –- 设置集群中的C6H2的namenode的rpc访问地址和端口 -- >
<property>
<name>dfs.namenode.http-address.cluster1.C6H2</name>
<value>C6H2:50070</value>
</property>
<! –- 设置namenode的元数据信息都保存在journal集群中 -- >
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://C6H1:8485;C6H2:8485;C6H3:8485/cluster1</value>
</property>
<!-- 设置cluster1故障时,哪一个实现类指定故障切换 -- >
<property>
<name>dfs.client.failover.proxy.provider.cluster1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<! -- 设置NameNode切换的操作方式,使用ssh操作 -- >
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<!-- 设置密钥保存位置 -- >
<property>
<name>dfs.ha.fencing.ssh.private-key-file</name>
<value>/root/.ssh/id_rsa</value>
</property>
<! -- 指定journalNode集群对NameNode的目录进行共享时,自己存储在磁盘的路径-- >
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/data/dfs/journal</value>
</property>
<! -- 设置namenode存储在磁盘的路径 -->
<property>
<name>dfs.namenode.name.dir</name>
<value>/data/dfs/name</value>
</property>
<! -- 设置datanode存储在磁盘的路径 -- >
<property>
<name>dfs.datanode.data.dir</name>
<value>/data/dfs/data</value>
</property>
<! -- 开启web端访问FS -- >
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
</configuration>
<configuration>
<! -- 与Hadoop1不一样的这里设置yarn方式执行mapreduce -- >
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
<configuration>
<!-- Site specific YARN configuration properties -->
<! -- 设置reourcemanager主机,这里只能设置一个,有单点隐患! -- >
<property>
<name>yarn.resourcemanager.hostname</name>
<value>C6H1</value>
</property>
<! -- 设置aux-services,mapreduce_shuffle -- >
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
export JAVA_HOME=/usr/local/jdk #设置hadoop调用的JAVA_HOME路径
export JAVA_HOME=/usr/local/jdk #设置hadoop调用的JAVA_HOME路径
export JAVA_HOME=/usr/local/jdk #设置hadoop调用的JAVA_HOME路径
vi /usr/local/hadoop2/etc/hadoop/slaves
C6H1
C6H2
C6H3
每行一个主机名
初始化跟hadoop1不同,按照步骤来操作,如果重复格式化需要删除 /data/dfs/中的所有目录,也就是hadoop.tmp.dir设置的路径。
1、分别在三台机器上启动JournalNode
hadoop-daemon.sh start journalnode
2、在C6H1格式化NameNode
hdfs namenode –format
3、在C6H1上启动namenode
hadoop-daemon.sh start namenode
4、在C6H2上格式化另一个NameNode,需要同步C6H1上的NameNode数据。
hdfs namenode –bootstrapStandby
5、启动另一个NameNode
hadoop-daemon.sh start namenode
6、关闭NameNode,启动所有的hadoop所有服务
stop-all.sh
start-all.sh #以后启动直接使用这个命令就行,第一次初始化必须按照以上步骤操作。
启动HDFS 的HA自动切换
hdfs haadmin –failover –forceactive CH61 C6H2
Failover from C6H1 to C6H2 successful
SHELL测试创建文件夹
hadoop fs –mkdir /data
hadoop fs –ls /
vi /root/word.text
hello you
hello me
上传一个文本文件
hadoop fs –put /root/word.text /
使用自带的测试包测试wordcount
格式 hadoop jar jar包路径 wordcount hdfs输入路径 输出路径(必须不存在的,会自动创建)
[root@C6H1 hadoop]# hadoop jar /usr/local/hadoop2/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.3.0.jar wordcount /word.text /word_out1
14/03/16 09:36:21 INFO client.RMProxy: Connecting to ResourceManager at C6H1/192.168.1.11:8032
14/03/16 09:36:22 INFO input.FileInputFormat: Total input paths to process : 1
14/03/16 09:36:22 INFO mapreduce.JobSubmitter: number of splits:1
14/03/16 09:36:23 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1394933446304_0001
14/03/16 09:36:23 INFO impl.YarnClientImpl: Submitted application application_1394933446304_0001
14/03/16 09:36:23 INFO mapreduce.Job: The url to track the job: http://C6H1:8088/proxy/application_1394933446304_0001/
14/03/16 09:36:23 INFO mapreduce.Job: Running job: job_1394933446304_0001
14/03/16 09:36:31 INFO mapreduce.Job: Job job_1394933446304_0001 running in uber mode : false
14/03/16 09:36:31 INFO mapreduce.Job: map 0% reduce 0%
14/03/16 09:36:38 INFO mapreduce.Job: map 100% reduce 0%
14/03/16 09:36:44 INFO mapreduce.Job: map 100% reduce 100%
14/03/16 09:36:45 INFO mapreduce.Job: Job job_1394933446304_0001 completed successfully
14/03/16 09:36:45 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=48
FILE: Number of bytes written=173817
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=108
HDFS: Number of bytes written=26
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=4262
Total time spent by all reduces in occupied slots (ms)=3556
Total time spent by all map tasks (ms)=4262
Total time spent by all reduce tasks (ms)=3556
Total vcore-seconds taken by all map tasks=4262
Total vcore-seconds taken by all reduce tasks=3556
Total megabyte-seconds taken by all map tasks=4364288
Total megabyte-seconds taken by all reduce tasks=3641344
Map-Reduce Framework
Map input records=2
Map output records=4
Map output bytes=34
Map output materialized bytes=48
Input split bytes=90
Combine input records=4
Combine output records=4
Reduce input groups=4
Reduce shuffle bytes=48
Reduce input records=4
Reduce output records=4
Spilled Records=8
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=152
CPU time spent (ms)=1330
Physical memory (bytes) snapshot=308592640
Virtual memory (bytes) snapshot=1708167168
Total committed heap usage (bytes)=136450048
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=18
File Output Format Counters
Bytes Written=26
集群搭建参考吴超-沉思录博客,转载请注明出处,谢谢!