- 【第9章】“基础工作流”怎么用?(图生图/局部重绘/VAE/更多基础工作流)ComfyUI基础入门教程
聚梦小课堂
ComfyUI基础入门课comfyui基础教程工作流教程AI绘画教程AI作画人工智能stablediffusion
引言学到这里,大家是不是会比较纠结,好像还在持续学习新的东西,未来还有多少基础的东西要学习,才能正常使用ComfyUI呢?这其实需要转变一个心态。AI绘画还处于一个快速迭代的过程,隔三岔五的就会有很多新技术、新模型出现,ComfyUI目前同样处于一个快速更新的阶段,从更新记录上也可以看到,几乎每一两天都会更新新版本。同样,生态的各种自定义节点也在持续更新。所以,不可能有个教程把所有未来会用到的知识
- 做好自己生活的导演,难道不是吗?
心灵星图
程序人生
做好自己生活的导演,难道不是吗?在这个短视频盛行的时代,每个人都可以成为自己生活的导演。无论是记录生活点滴,还是分享专业知识,掌握基本的视频制作技巧都能让我们的表达更加精彩。今天就让我们一起探讨视频创作的三大核心要素。一、内容为王:讲好你的故事视频剪辑的核心是内容叙事。再华丽的特效也比不上一个打动人心的故事。以下是几个常见的内容问题:内容表达不通顺语气、语速不自然外界干扰影响理解需要通过节奏调整让
- YOLO魔改之频率分割模块(FDM)
清风AI
YOLO算法魔改系列YOLO人工智能计算机视觉目标检测python深度学习
目标检测原理目标检测是一种将目标分割和识别相结合的图像处理技术,旨在从图像中定位并识别特定目标。深度学习方法,如FasterR-CNN和YOLO系列,已成为主流解决方案。这些方法通常采用两阶段或单阶段策略,通过卷积神经网络(CNN)提取特征并进行分类和定位。在小目标检测中,为克服分辨率低和特征不明显的问题,模型设计中会特别注重特征融合和多尺度处理,以增强对小目标的感知能力。YOLOv8基础YOLO
- PyTorch模型训练实战指南:掌握动态图特性与工业级部署技巧
lmtealily
pytorch人工智能python
前言在深度学习领域,PyTorch凭借其动态计算图、高效的自动微分系统及高度Pythonic的设计哲学,已成为学术界与工业界的主流框架。其即时执行模式大幅简化了模型调试流程,而灵活的模块化设计则为复杂模型的构建提供了坚实基础。然而,从实验原型到工业级部署的全链路实践中,开发者仍需系统性掌握框架核心特性与工程化技巧。本文以实战为导向,深入剖析PyTorch动态图机制与自动微分原理,详解从数据预处理、
- 零基础到网络安全工程师
幼儿园扛把子\
web安全安全
爆肝!三个月从零基础到网络安全工程师:2025年黑客技术实战指南(附工具包+100G资源)网络安全攻防示意图|数据来源:CSDN技术社区关键词:网络安全、红队实战、CTF竞赛、渗透测试、漏洞挖掘一、为什么90%的人学不会黑客技术?这3个误区正在毁掉你!1.错误认知:把"黑客"等同于"攻击者"真相:网络安全法实施后,合规的渗透测试工程师(白帽黑客)已成国家战略人才,平均月薪25K+案例:某学员通过挖
- ESG证书:AI预测未来十年职场人的黄金入场券
ESG学习圈
pandaspythondjango
当ChatGPT开始撰写ESG报告,当机器学习模型精准预测企业碳排放轨迹,一场由AI驱动的ESG革命正在颠覆传统可持续发展领域。根据彭博新能源财经预测,到2030年全球ESG资产管理规模将突破50万亿美元,而AI技术将成为撬动这个万亿级市场的核心杠杆。一、AI透视下的ESG黄金时代在微软开发的AI模型ESG-NOW系统中,通过分析全球4300家上市公司近十年的环境数据,成功预测2025年新能源行业
- 【新能源集成热管理系统的开发与优化】
新能源汽车--三电老K
研发测试汽车学习方法
新能源集成热管理系统的开发与优化涉及多阶段的试验、标定和策略调整,需结合实验室仿真、环境仓测试及实车道路验证,以应对高低温、极端气候等复杂工况。以下是具体实施方法:一、环境仓试验室测试系统标定与基础验证模型搭建:通过AMESim等仿真工具建立机-电-热耦合模型,涵盖电池、电机、空调等子系统,分析高温工况下各部件能耗占比及整车续航表现。参数标定:在环境仓中模拟极端温度(如38℃高温或-30℃低温),
- 【数学建模】模糊综合评价模型详解、模糊集合论简介
烟锁池塘柳0
数学建模数学建模
模糊综合评价模型详解文章目录模糊综合评价模型详解1.模糊综合评价模型概述2.模糊综合评价的基本原理2.1基本概念2.2评价步骤3.模糊综合评价的数学模型3.1数学表达3.2模糊合成运算4.模糊综合评价的应用领域5.模糊综合评价的优缺点5.1优点5.2缺点6.模糊综合评价的实现步骤7.模糊综合评价在实际项目中的应用案例8.结论参考资料1.模糊综合评价模型概述模糊综合评价法(FuzzyComprehe
- 【数学建模】灰色关联分析模型详解与应用
烟锁池塘柳0
数学建模数学建模算法
灰色关联分析模型详解与应用文章目录灰色关联分析模型详解与应用引言灰色系统理论简介灰色关联分析基本原理灰色关联分析计算步骤1.确定分析序列2.数据无量纲化处理3.计算关联系数4.计算关联度灰色关联分析应用实例实例:某企业生产效率影响因素分析灰色关联分析在各领域的应用灰色关联分析的Python实现灰色关联分析的局限性结论引言在数据分析领域,我们经常面临样本量少、信息不完全、数据不确定性高的情况。传统的
- 【网易雷火秋招】前端面经分享
编程自学-领绿学长
前端求职招聘面试
网易网易雷火是国内一流且最有创新力的游戏研发团队,是网易杭州的第一个游戏工作室。雷火开创性的打造了《逆水寒》、《永劫无间》、《倩女幽魂》、《全明星街球派对》等一众爆款游戏;并在二次元、FPS、主机游戏等方向上持续探索,《代号:无限大》等在研项目收到玩家广泛关注。与此同时,我们与全球合作伙伴一起共同构建开放、协同、共荣共生的产业生态,致力于让中国游戏走出去,让世界听见雷火声音。雷火还拥有国内专业从事
- MyBatis-Plus中使用@Transactional注解的5大陷阱,你中招了吗?
墨瑾轩
Java乐园mybatis
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣MyBatis-Plus中使用@Transactional注解的5大陷阱,你中招了吗?在使用MyBatis-Plus进行持久层开发时,事务控制是确保数据一致性的重要手段。然而,在实践中,不当的使用@Transactional注解可能导致各种意想不到的问题。本文
- 学习 积累 规划 一个DBA的成功之路
小藤椅
Oracle基础知识数据库db2sqlserverinformixibmoracle
一个DBA的数据库学习经验:选定发展方向1999年,我在开始读研时就给自己确定了以后的发展方向。当时有两个方向:网络,数据库技术。因为在2000年之时,网络大热,市场上拥有CCNP、CCIE证书的人特别牛。所以我当时也考下了CCNP证书,但后来发现网络方向涉及很多硬件层面的东西,这些都对厂商的依赖性太强,个人发挥空间不大。而我喜欢钻研,所以慢慢开始转向专攻数据库技术。在认准数据库这个方向后,我开始
- 3.16RabbitMQ入门实战
plusk
rabbitmq分布式
RabbitMQ基本概念:RabbitMQ是遵循AMQP(AdvancedMessageQueueProtocol)协议,即高级消息队列协议实现的,AMQP协议是一个标准协议,如果想写一个原生的消息队列的话也可以遵守该协议去开发。结合AMQP协议的模型图我们可以去理解RabbitMQ的运行机制:生产者(Publisher,图中最左边):发送消息到交换机交换机(Exchange):接收消息,并决定转
- DeepSeek+知网研学轻松搞定研究生选题
AI新视界
AI学术学术软件推荐AI工具AI学术学习人工智能学术
选题是研究生学术研究的起点,一个好的选题不仅决定了研究的方向,还直接影响研究的深度和成果。本文将详细介绍如何结合DeepSeek大模型与知网研学,帮助研究生高效完成选题工作。一、选题的重要性与挑战选题的重要性:选题是研究的核心,决定了研究的创新性和可行性。好的选题能够为后续研究提供明确的方向和动力。选题的挑战:如何从海量文献中找到有价值的研究方向?如何判断选题的创新性和研究价值?如何确保选题的可行
- 【Dive Into Stable Diffusion v3.5】1:开源项目正式发布——深入探索SDv3.5模型全参/LoRA/RLHF训练
Donvink
大模型#AIGCstablediffusionAIGC人工智能机器学习深度学习
目录1引言2项目简介3快速上手3.1下载代码3.2环境配置3.3项目结构3.4下载模型与数据集3.5运行指令3.6核心参数说明3.6.1通用参数3.6.2优化器/学习率3.6.3数据相关4结语1引言在人工智能和机器学习领域,生成模型的应用越来越广泛。StableDiffusion作为其中的佼佼者,因其强大的图像生成能力而备受关注。今天,我的开源项目DiveIntoStableDiffusionv3
- 云原生边缘计算:分布式智能的时代黎明
桂月二二
云原生边缘计算分布式
引言:从集中式算力到万物智联的范式裂变AT&T边缘节点部署超5000个,特斯拉自动驾驶系统每节点200TOPS算力。国家电网通过边缘计算实现毫秒级电网故障隔离,菜鸟物流分拣效率提升400%。IDC预测2027年边缘基础设施支出将达亿,宝马汽车工厂设备预测性维护准确率达9亿运维成本。一、边缘计算范式进化论1.1算力拓扑结构演变世代大型主机中心化云计算分布式雾计算去中心化边缘计算泛在化神经形态计算体计
- 效果媲美GPT4V的多模态大型语言模型MiniCPM-V-2_6详细介绍
我就是全世界
语言模型人工智能自然语言处理
MiniCPM-V-2.6概述1.1模型背景MiniCPM-V-2.6是由nuoan开发的一款达到GPT-4V级别的多模态大型语言模型(MLLM)。该模型专为手机上的单图像、多图像和视频处理设计,旨在提供高效、准确的多模态内容理解与生成能力。随着移动设备的普及和计算能力的提升,用户对于在移动端进行复杂图像和视频处理的需求日益增长。MiniCPM-V-2.6的推出,正是为了满足这一需求,提供了一种在
- 开源模型应用落地-qwen模型小试-调用Qwen2-7B-Instruct-进阶篇(十二)
开源技术探险家
开源模型-实际应用落地#深度学习自然语言处理语言模型
一、前言经过前五篇“qwen模型小试”文章的学习,我们已经熟练掌握qwen大模型的使用。然而,就在前几天阿里云又发布了Qwen2版本。无论是语言模型还是多模态模型,均在大规模多语言和多模态数据上进行预训练,并通过高质量数据进行后期微调以贴近人类偏好。本文将介绍如何使用Transformers库进行模型推理(相较于qwen1系列,使用方式上有较大的调整),现在,我们赶紧跟上脚步,去体验一下新版本模型
- 基于大模型的腮腺多形性腺瘤全周期诊疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2研究现状与趋势二、大模型预测原理与方法2.1大模型概述2.2数据收集与预处理2.3模型训练与优化三、术前预测与评估3.1肿瘤特征预测3.2风险评估3.3案例分析四、术中方案制定与实施4.1手术方案选择4.2面神经保护策略4.3麻醉方案确定五、术后恢复与并发症预测5.1恢复情况预测5.2并发症风险预测5.3案例分析六、术后护理与康复6.1护理措施6.2康复训练6
- 使用fastapi部署stable diffusion模型
明晚十点睡
代码fastapistablediffusionpytorchpython人工智能深度学习计算机视觉
使用vscode运行stablediffusion模型,每次加载模型都需要10+分钟,为算法及prompt调试带来了极大麻烦。使用jupyter解决自然是一个比较好的方案,但如果jupyter由于种种原因不能使用时,fastapi无疑成为了一个很好的选择。参考github链接:https://github.com/jarvislabsai/fastapi-sd-templatefromfastap
- 数学中的“矩”
heraldww
数学概率论人工智能机器学习
数学中的“矩”矩的数学意义,高度总结:数学上,“矩”是一组点组成的模型的特定的数量测度。在力学和统计学中都有用到“矩”。如果这些点代表“质量”,那么:零阶矩表示所有点的质量;一阶矩表示质心;二阶矩表示转动惯量。如果这些点代表“概率密度”,那么:零阶矩表示这些点的总概率(也就是1);一阶矩表示期望;二阶(中心)矩表示方差;三阶(中心)矩表示偏斜度;四阶(中心)矩表示峰度;这个数学上的概念和物理上的“
- 项目经理面试全攻略:从底层能力拆解到高通过率话术
在竞争激烈的职场中,项目经理岗位的面试堪称“综合能力大考”——既要展现系统化的方法论,又要传递真实的领导力,还要让考官相信你能在复杂环境中推动结果落地。据PMI(美国项目管理协会)调查,82%的优秀项目经理在面试中能清晰呈现“业务价值-团队协作-风险控制”的三角能力模型。本文从能力拆解、面试准备、实战话术三个维度,揭秘项目经理面试通关法则。一、项目经理面试的四大核心能力雷达图面试官通过以下维度评估
- 【硬核实战】ETCD+AI智能调度深度整合!从架构设计到调优避坑,手把手教你打造高可用调度系统!
码农突围计划
人工智能etcd大数据
一、核心架构设计:ETCD如何赋能AI调度?架构图:[AI调度引擎]←实时数据→[ETCD集群]↓决策指令[执行层(车辆/物流/交通设备)]核心角色:ETCD:存储调度策略、节点状态、任务队列、实时环境数据(如交通流量、天气)AI模型:基于ETCD数据动态决策(如路径规划、资源分配)调度执行层:接收ETCD下发的指令并执行(如车辆调度、信号灯控制)优势:强一致性:ETCD的Raft协议确保调度策略
- 信创产品在政府采购中的五大优势
程序员
信创产品在政府采购中扮演着越来越重要的角色,其优势逐渐凸显,为政府采购领域带来了诸多积极影响。随着信息技术的飞速发展和国家对自主创新的高度重视,信创产品凭借自身独特的特性,在政府采购市场中展现出强大的竞争力。以下将详细阐述信创产品在政府采购中的五大优势。安全性更高在数字化时代,信息安全至关重要,尤其是对于政府采购项目,涉及大量敏感信息和公共利益。信创产品在安全性方面具有显著优势。首先,信创产品的研
- 2025健康保障新选择 众托帮用“互助力量”为家庭健康加码
创新
近期,《健康中国2030规划纲要》中期评估报告发布,明确提出“鼓励社会互助机制创新,完善多层次医疗保障”。面对医保目录外用药、突发重疾等潜在风险,越来越多家庭开始关注“基础医保+互助保障”的双重防护模式。众托帮作为国内领先的大病互助平台,以灵活参与、透明运作的特点,成为千万家庭的健康“备选项”。**社会互助成健康中国“新解法”**2025年国家多部门联合印发《关于引导社会力量参与医疗保障的指导意见
- 深度解析Java中的代码分支策略规划:掌握GitFlow与GitHub Flow的艺术
墨夶
Java学习资料2javagithub开发语言
在这个技术日新月异的时代,每一个开发者都在寻找提高效率、减少错误并优化团队协作的方法。而当涉及到代码管理时,选择正确的分支策略至关重要。今天,我们将深入探讨如何在Java项目中应用两种流行的分支策略——GitFlow和GitHubFlow,并通过详尽的示例代码来展示它们的实际运用。1.分支管理策略概览分支管理策略不仅帮助团队成员之间进行有效的沟通,还确保了代码库的健康状态。无论是小型创业公司还是大
- 水务环保企业 “十五五”:新挑战汹涌而至,新征程
安全智能合约人工智能
引言以《关于加快市政公用行业市场化改革的意见》(建城[2002]272号)、《市政公用事业特许经营管理办法》(2004年建设部令第126号)为标志,水务环保行业启动市场化改革至今,历经了外资引领、民营崛起、高速发展、转型升级等不同阶段。“十三五”时期,随着“水十条”在全国各地的贯彻落实,水环境综合治理需求开始释放;同期,国家部委层面推动PPP模式,供排水投资和运营主体呈现多元化,行业建设的资金瓶颈
- 知识库在意图识别中扮演着**数据支撑**和**语义理解辅助**的双重角色
PersistDZ
大数据与AI人工智能
知识库在意图识别中扮演着数据支撑和语义理解辅助的双重角色,而训练智能客服的意图识别Agent需要结合知识库的结构化数据与机器学习技术。以下是详细解析:一、知识库在意图识别中的作用1.提供标注数据意图标签定义:知识库中存储了预先定义的意图分类体系(如“订单查询”“退换货”“投诉”等),为模型提供明确的训练目标。标注样本:知识库包含大量用户对话历史及其对应的意图标签,是训练监督学习模型的核心数据源。2
- Gmsh教程
网卡了
GmshpythonGmsh
13、在没有底层CAD模型的情况下重新擦除STL文件importgmsh#导入Gmsh库,用于几何建模和网格划分importmath#导入数学库,用于计算importos#导入操作系统库,用于处理文件路径importsys#导入系统库,用于处理命令行参数gmsh.initialize()#初始化Gmsh环境defcreateGeometryAndMesh():#清除之前的模型和数据gmsh.cle
- OpenBayes 教程上新丨单卡A6000轻松部署Gemma 3,精准识别黄仁勋演讲实拍
3月12日晚间,谷歌发布了「单卡大魔王」Gemma3,号称是能在单个GPU或TPU上运行的最强模型,真实战绩也证实了官方blog所言非虚——其27B版本击败671B的满血DeepSeekV3,以及o3-mini、Llama-405B,仅次于DeepSeekR1,但在算力需求方面却远低于其他模型。如下图所示:*按照ChatbotArenaElo分数对模型进行排名;圆点表示预估的算力需求随后,谷歌也是
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多