MiYu原创, 转帖请注明 : 转载自 ______________白白の屋
题目地址:
http://acm.hdu.edu.cn/showproblem.php?pid=2199
题目描述:
Can you solve
this
equation
?
Time Limit:
2000
/
1000
MS (Java
/
Others) Memory Limit:
32768
/
32768
K (Java
/
Others)
Total Submission(s):
322
Accepted Submission(s):
148
Problem Description
Now,given the equation
8
*
x
^
4
+
7
*
x
^
3
+
2
*
x
^
2
+
3
*
x
+
6
==
Y,can you find its solution between
0
and
100
;
Now please
try
your lucky.
Input
The first line of the input contains an integer T(
1
<=
T
<=
100
) which means the number of test cases. Then T lines follow, each line has a real number Y (fabs(Y)
<=
1e10);
Output
For each test
case
, you should just output one real number(accurate up to
4
decimal
places),which
is
the solution of the equation,or “No solution
!
”,
if
there
is
no solution
for
the equation between
0
and
100
.
Sample Input
2
100
-
4
Sample Output
1.6152
No solution
!
题目分析:
很明显,这是一个2分搜索的题目, 但是注意下题目的数据!! 1e10 的实数!! 而且精度是要求在 0.0001 . 所以就算是2分数据量依旧比较大,如果用
通常的递归方法吗很遗憾 , RE了............. 没办法, 只能循环了.
下面的是递归 RE 的代码 :
#include <iostream>
#include <cmath>
using namespace std;
#define POW(x) ( (x) * (x) )
#define POW3(x) ( POW(x) * (x) )
#define POW4(x) ( POW(x) * POW(x) )
double y = 0; bool douEql ( double a,double b ) { if ( fabs( a - b ) <= 1e-6 ) return true; return false; } double cal ( double n ) { return 8.0 * POW4(n) + 7 * POW3(n) + 2 * POW(n) + 3 * n + 6 ; } double biSearch ( double l, double r ) { if ( douEql ( l,r ) ) { if ( douEql ( y, cal ( l ) ) ) return l; return -1; } double mid = ( l + r ) / 2.0; if ( douEql ( y, cal ( mid ) ) ) return mid; else if ( cal ( mid ) > y ) return biSearch ( l,mid - 0.0001 ); else return biSearch ( mid + 0.0001, r ); } int main () { int T;
scanf ( "%d",&T ); while ( T -- ) {
scanf ( "%lf",&y ); if ( cal(0) >= y && cal(100) <= y ) {
printf ( "No solution!\n" ); continue; } double res = biSearch ( 0.0, 100.0 ); if ( res == -1 )
printf ( "No solution!\n" ); else
printf ( "%.4lf\n",res ); } return 0; }
AC代码如下:
MiYu原创, 转帖请注明 : 转载自 ______________白白の屋
#include
<
iostream
>
#include
<
cmath
>
using
namespace
std;
#define
POW(x) ( (x) * (x) )
#define
POW3(x) ( POW(x) * (x) )
#define
POW4(x) ( POW(x) * POW(x) )
double
y
=
0
;
double
cal (
double
n )
{
return
8.0
*
POW4(n)
+
7
*
POW3(n)
+
2
*
POW(n)
+
3
*
n
+
6
;
}
int
main ()
{
int
T;
scanf (
"
%d
"
,
&
T );
while
( T
--
)
{
scanf (
"
%lf
"
,
&
y );
if
( cal(
0
)
>
y
||
cal(
100
)
<
y )
{
printf (
"
No solution!\n
"
);
continue
;
}
double
l
=
0.0
, r
=
100.0
,res
=
0.0
;
while
( r
-
l
>
1e
-
6
)
{
double
mid
=
( l
+
r )
/
2.0
;
res
=
cal ( mid );
if
( res
>
y )
r
=
mid
-
1e
-
6
;
else
l
=
mid
+
1e
-
6
;
}
printf (
"
%.4lf\n
"
,( l
+
r )
/
2.0
);
}
return
0
;
}