初学
Python
;理解机器学习。
算法是需要实现的,纸上得来终觉浅。
// @author: gr
// @date: 2015-01-16
// @email: [email protected]
from numpy import *
import operator
def createDataSet():
group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels
def classify0(inX, dataSet, labels, k):
# 求输入向量与各个样例的距离
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis = 1)
distances = sqDistances ** 0.5
# 按距离递增排序
sortedDistIndicies = distances.argsort()
classCount = {}
# 对前k个样例的标签进行计数
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
# 按照计数对标签进行递减排序
sortedClassCount = sorted(classCount.iteritems(),
key = operator.itemgetter(1), reverse=True)
# 返回最多计数的标签,即为该输入向量的预测标签
return sortedClassCount[0][0]
def file2matrix(filename):
# 读取文件
fr = open(filename)
arrayOLines = fr.readlines()
numberOfLines = len(arrayOLines)
returnMat = zeros((numberOfLines, 3))
classLabelVector = []
index = 0
for line in arrayOLines:
# 去除换行符
line = line.strip()
# 按Tab键分割列
listFromLine = line.split('\t')
returnMat[index, :] = listFromLine[0:3]
# 存储标签
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat, classLabelVector
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
# 数据的行数
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals, (m, 1))
normDataSet = normDataSet / tile(ranges, (m, 1))
return normDataSet, ranges, minVals
def datingClassTest():
hoRatio = 0.10
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
# 选取测试集数量
numTestVecs = int(m * hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i, :], normMat[numTestVecs:m, :], \
datingLabels[numTestVecs:m], 7)
print "the classifirer came back with: %d, the real answer is: %d"\
% (classifierResult, datingLabels[i])
# 记录错误数
if (classifierResult != datingLabels[i]) : errorCount += 1.0
print "numTestVecs: %f" % float(numTestVecs)
print "the total error rate is: %f" % (errorCount/float(numTestVecs))
def classifyPerson():
# 针对一个人判断
resultList = ['not at all', 'in small doses', 'in large doses']
percentTats = float(raw_input(\
"percentage of time spent playing video games?"))
ffMiles = float(raw_input("frequent flier miles earned per year?"))
iceCream = float(raw_input("liters of ice cream consumed per year?"))
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = array([ffMiles, percentTats, iceCream])
classifierResult = classify0((inArr-\
minVals)/ranges, normMat, datingLabels, 3)
print "You will probably like this person: ", \
resultList[classifierResult - 1]
def img2vector(filename):
# 32*32的图片转成一个向量
returnVect = zeros((1, 1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0, 32*i+j] = int(lineStr[j])
return returnVect
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits')
m = len(trainingFileList)
trainingMat = zeros((m, 1024))
# 把训练的文件图片转换成一个m*1024矩阵
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i, :] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = listdir('testDigits')
errorCount = 0.0
# 在测试集上测试
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, \
trainingMat, hwLabels, 3)
print "the classifier came back with: %d, the real answer is: %d" \
% (classifierResult, classNumStr)
if (classifierResult != classNumStr):
errorCount += 1.0
print "\n the total number of errors is: %d" % errorCount
print "\n the total error rate is: %f" % (errorCount/float(mTest))