hdu 1788 Chinese remainder theorem again(最小公倍数)

Problem Description

我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)

x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1- a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100i=1,2,…I),求满足条件的最小的数。 

 

 

Input

输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1...MI,I=0并且a=0结束输入,不处理。

 

 

Output

对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。

 

 

Sample Input

2 1

2 3

0 0

 

 

Sample Output

5

 /******************************

这题太坑了,题目写的是  Chinese remainder theorem,却明明是最小公倍数。。。

分析:M%M1 = M1-a,M%M2 = M2-a,M%M3 = M3-a,……,M%Mi = Mi-a

      即:(M+a) %M1 = 0,(M+a) %M2 = 0,(M+a) %M3 = 0,……,(M+a) %Mi = 0,

      即: M+a  是M1,M2,M3,……,Mi的一个最小公倍数。。

好了,求最小公倍数吧!!

//  将hdu 1019 的代码稍微改了一下,注意要使用__int64,int不行。。。

****************************************/


Code:

#include <iostream>
#include<string.h>
using namespace std;
__int64 gcd(__int64 a,__int64 b)//求最大公约数
{
    __int64 temp;
    if(a<b)
    {
        temp = a;a = b;b = temp;
    }
    return (b==0)?a:gcd(b,a%b);
}
__int64 LCM(__int64 a,__int64 b)//求最小公倍数
{
    return a/gcd(a,b)*b; 
}
int main()
{
    __int64 n,ans,x,a;
    while(cin>>n>>a&&n&&a)
    {
        //memset(a,0,sizeof(a));
        ans = 1;
        cin>>x;
        ans = LCM(ans,x);
        for(int i = 0;i<n-1;i++)
        {
            cin>>x;
            ans = LCM(ans,x);
        }
        ans-=a;
        cout<<ans<<endl;
    }

    return 0;
}



你可能感兴趣的:(chinese)