*Best Time to Buy and Sell Stock III

题目:

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

 

题解: 

根据题目要求,最多进行两次买卖股票,而且手中不能有2只股票,就是不能连续两次买入操作。

所以,两次交易必须是分布在2各区间内,也就是动作为:买入卖出,买入卖出。

进而,我们可以划分为2个区间[0,i]和[i,len-1],i可以取0~len-1。

那么两次买卖的最大利润为:在两个区间的最大利益和的最大利润。

一次划分的最大利益为:Profit[i] = MaxProfit(区间[0,i]) + MaxProfit(区间[i,len-1]);

最终的最大利润为:MaxProfit(Profit[0], Profit[1], Profit[2], ... , Profit[len-1])。

 

代码如下:

 

 1 public int maxProfit(int[] prices) {  

 2         if(prices == null || prices.length <= 1){  

 3             return 0;  

 4         }  

 5         int len = prices.length;  

 6         int maxProfit = 0;  

 7         int min = prices[0];  

 8         int arrayA[] = new int[len];  

 9         

10         for(int i=1;i<prices.length;i++){

11             min=Math.min(min,prices[i]);

12             arrayA[i]=Math.max(arrayA[i-1],prices[i]-min);

13         }

14         

15         int max = prices[len-1];  

16         int arrayB[] = new int[len];  

17         for(int i = len-2; i >= 0; i--){

18             max = Math.max(prices[i],max);

19             arrayB[i] = Math.max(max-prices[i],arrayB[i+1]);

20         }  

21         

22         for(int i = 0; i < len; i++){  

23             maxProfit = Math.max(maxProfit,arrayA[i] + arrayB[i]);

24         }  

25         

26         return maxProfit;  

27     }

 

运行结果:

int[] prices = {3,2,7,4,5,10}

arrayA:[0, 0, 5, 5, 5, 8]

arrayB:[8, 8, 6, 6, 5, 0]

maxProfit: 11

 

reference:

 http://www.cnblogs.com/springfor/p/3877068.html

 

http://blog.csdn.net/u013027996/article/details/19414967 

 

 

 

 

 

 

 

你可能感兴趣的:(time)