- linux进程调度HMP,HMP调度器和EAS调度器
熙公主的爪牙
linux进程调度HMP
HMP调度器为了降低功耗,ARM开发了大小核架构处理器。Linux内核中的负载均衡算法基于SMP模型,并未考虑big.LITTLE模型,因此Linaro开发了一个HMP调度器用于支持这种架构,它也被用于Android5.x和Android6.x中,但这种调度器并没有被合入内核的基线中。该调度器的进程调度算法基本上和CFS一样,主要区别在于调度域和负载均衡的处理上。HMP调度域的实现比自带的CFS调
- 计算机视觉领域的轻量化模型——GhostNet 模型
DuHz
边缘计算轻量化模型计算机视觉人工智能算法深度学习神经网络边缘计算网络
GhostNet模型详解GhostNet是一个高效的轻量化卷积神经网络模型,专为资源受限的设备(如移动设备和嵌入式系统)设计。它的核心创新是Ghost模块,该模块通过生成更多的特征图来减少计算资源消耗。GhostNet适用于实时计算任务,如图像分类和物体检测,同时在保持较高准确率的基础上,优化了计算效率。目录GhostNet背景Ghost模块概述GhostNet网络架构Ghost模块的数学原理Gh
- 课程内容摘要生成:基于知识蒸馏与事实增强的深度学习模型实践
二进制独立开发
非纯粹GenAIGenAI与Python深度学习人工智能自然语言处理python语言模型神经网络生成对抗网络
文章目录引言一、核心技术:知识蒸馏与事实三元组融合二、模型架构设计与优化三、Python实现与关键代码解析四、业务价值与效果分析五、挑战与优化方向引言在教育内容数字化进程中,课程内容摘要生成技术能够从海量教学资源中提炼核心知识点,解决人工编写效率低、知识更新滞后的问题。当前主流方法依赖于深度学习模型,但存在事实性偏差、可解释性不足等缺陷。本文提出一种融合知识蒸馏与事实三元组增强的摘要生成框架,结合
- 读书笔记-《乡下人的悲歌》
萝卜青今天也要开心
笔记学习
前段时间看了一些J.D.Vance的采访视频,几乎都是记者带着刁难的问题先手进攻,而Vance面带微笑,提及对方的名字,条理清晰地从对方的攻击中切回主题形成后手反制,实在让人看得过瘾。更不可思议的是,Vance的成长经历似乎也非常糟糕,他是如何走到今天这一步的呢?带着这样的疑问,我拿起了这本传记。01Vance的成长经历Vance成长时所处的大背景是:中西部工业地区经济下滑,制造业岗位流向海外,没
- 详解大模型微调数据集构建方法(持续更新)
herosunly
大模型微调数据集构建方法
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文详细介绍了大模型微调数据集构建方法,希望能对学习大模型的同学们有所帮助。文章目录
- 2025年最新在线模型转换工具优化模型ncnn,mnn,tengine,onnx
我的青春不太冷
mnn人工智能深度学习ncnn在线模型转换网址
文章目录引言最新网址地点一、模型转换1.框架转换全景图2.安全的模型转换3.网站全景图二、转换说明三、模型转换流程图四、感谢引言在yolov5,yolov8,yolov11等等模型转换的领域中,时间成本常常是开发者头疼的问题。最近发现一个超棒的网站工具,简直是模型转换的神器。它最大的亮点就是省去编译转换工具的时间,开箱即用,一键转换。对于目标格式,提供了tengine、ncnn、mnn、onnx等
- python学习笔记
YYYYYY02020
python学习笔记
1print不用添加";",但是加了也行print("666")print('666')print("6'6'6")print("6\"6\'6")print("""666666555""")print("张三"+"李四")2math#引入函数库importmatha=1b=2c=3#b**2就是b的平方x=(-b+(b**2-4*a*c)**(1/2))/2*ax=(-b+math.sqrt(b
- 读书笔记-《Redis设计与实现》(一)数据结构与对象(下)
萝卜青今天也要开心
redis数据结构学习java
各位朋友新年快乐~今天我们来继续学习Redis。01整数集合当集合仅包含整数值,并且元素数量不多时,Redis就会采用整数集合来作为集合键的底层实现。typedefstructintset{//编码方式uint32_tencoding;//元素数量uint32_tlength;//数组int8_tcontents[];}intset;可以看到,contents就是存储元素的地方,各个元素按从小到大
- Github 2025-02-01 开源项目月报 Top20
老孙正经胡说
github开源Github趋势分析开源项目PythonGolang
根据GithubTrendings的统计,本月(2025-02-01统计)共有20个项目上榜。根据开发语言中项目的数量,汇总情况如下:开发语言项目数量Python项目8TypeScript项目3JupyterNotebook项目2Rust项目2HTML项目2C++项目1Ruby项目1JavaScript项目1Svelte项目1非开发语言项目1Go项目1Ollama:本地大型语言模型设置与运行创建周
- 咱们一起学C++第四十篇:之C++递归与运算符基础
一杯年华@编程空间
咱们一起学习C++c++strutskafkaintellij-ideaspringcloudspringbootjava-ee
咱们一起学C++第四十篇:之C++递归与运算符基础在C++学习的征程中,我们共同努力,不断探索这门语言的深度与广度。此前,我们学习了switch语句和goto关键字,今天,我们将深入研究递归这一有趣且实用的编程技巧,以及C++运算符的基础知识,包括运算符的优先级和自增自减运算符。这些知识是构建复杂程序逻辑和高效代码的重要基石。一、递归:函数自身的奇妙调用(一)递归的概念与原理递归是一种编程技巧,允
- 【TIMM应用】timm加载模型create_model,使用本地预训练模型
pen-ai
深度学习python深度学习神经网络卷积神经网络
timm加载模型create_model使用本地预训练模型1.常规方式,从https://huggingface.co/上下载1-1.timm库中create_model函数的用法1.最简单的用法2.查看可以直接创建的预训练模型列表3.参数:pretrained=True2.使用本地的预训练模型2-1.国内镜像下载模型:https://hf-mirror.com/2-2.查找对应模型名称2-3.调
- 基于深度学习的基于视觉的机器人导航
SEU-WYL
深度学习dnn深度学习机器人人工智能
基于深度学习的视觉机器人导航是一种通过深度学习算法结合视觉感知系统(如摄像头、LiDAR等)实现机器人在复杂环境中的自主导航的技术。这种方法使机器人能够像人类一样使用视觉信息感知环境、规划路径,并避开障碍物。与传统的导航方法相比,深度学习模型能够在动态环境中表现出更强的适应能力和鲁棒性。1.视觉导航的基本概念视觉导航是指通过处理机器人的摄像头等视觉传感器采集到的图像数据,构建环境模型,进而进行路径
- Cesium+Vue3教程(011):打造数字城市
叁拾舞
CeisumVue3cesium
文章目录Cesium打造数字城市创建项目加载地球设置底图设置摄像头查看具体位置和方向添加纽约建筑模型并设置样式添加纽约建筑模型设置样式划分城市区域并着色地图标记显示与实现实现飞机巡城完整项目下载Cesium打造数字城市创建项目使用vite创建vue3项目:pnpmcreatevite安装依赖:pnpminstall安装cesium:
[email protected]
- 自定义数据类型上——结构体
Aresy596
数据结构c语言学习笔记
自定义数据类型C语言中的自定义数据类型(用户自己建立的)有:数组类型,结构体类型,共用体类型,枚举类型。结构体struct1.定义:由不同类型数据组成的组合型的数据类型。struct结构体名{结构成员;} structStudent//定义一个名字为Student的结构 { intID; charname[10]; floatscore; //他们有以上信息 }; //写变量并赋值,{
- 设计模式的艺术-观察者模式
晚秋贰拾伍
设计模式的艺术设计模式观察者模式运维开发运维
行为型模式的名称、定义、学习难度和使用频率如下表所示:1.如何理解观察者模式一个对象的状态或行为的变化将导致其他对象的状态或行为也发生改变,它们之间将产生联动,正所谓“触一而牵百发”。为了更好地描述对象之间存在的这种一对多(包括一对一)的联动,观察者模式应运而生。观察者模式是使用频率最高的设计模式之一,用于建立对象与对象之间的依赖关系。一个对象发生改变时将自动通知其他对象,其他对象将相应做出反应。
- 苦逼测试第十七式:性能测试与瓶颈诊断——简单工具实现高效分析
Python测试之道
python测试提效python功能测试自动化
性能测试关乎系统的稳定性与用户体验,是测试工程师不可忽视的一环。然而,性能测试往往因工具复杂、配置繁琐、瓶颈难以定位而让测试工程师望而却步。特别是小型项目或初学者,面对JMeter、LoadRunner等工具的高学习曲线,常常无从下手。那么,有没有一种简单高效的方式,可以快速上手性能测试,并实现性能瓶颈诊断?答案是:有!本文将结合Python的轻量级工具(如Locust和k6),通过易于实现的解决
- 使用 Python 实现无人机实时路径规划的 MPC 算法
闲人编程
pythonpython无人机算法MPC路径优化
目录使用Python实现无人机实时路径规划的MPC算法引言1.模型预测控制(MPC)概述1.1定义1.2MPC的基本原理1.3代价函数1.4MPC的特点2.Python中的MPC算法实现2.1安装必要的库2.2定义类2.2.1无人机模型类2.2.2MPC控制器类2.3示例程序3.MPC算法的优缺点3.1优点3.2缺点4.改进方向5.应用场景结论使用Python实现无人机实时路径规划的MPC算法引言
- 100种算法【Python版】第44篇——龙格-库塔法
AnFany
算法python人工智能龙格-库塔微分方程ODE
本文目录1算法说明2算法示例:使用龙格-库塔法求解微分方程3算法应用:捕食者-猎物模型4算法可解决问题1算法说明龙格-库塔法最初由德国数学家卡尔·龙格(CarlRunge)和马丁·库塔(WilhelmKutta)在20世纪初提出。它们为求解常微分方程(ODE)提供了一种有效的数值方法,尤其是在处理初值问题时。龙格-库塔法的设计旨在通过提高计算的精度和稳定性,使数值解能更好地逼近真实解。最常用的版本
- 【深度学习】softmax回归的简洁实现
熙曦Sakura
深度学习深度学习回归人工智能
softmax回归的简洁实现我们发现(通过深度学习框架的高级API能够使实现)(softmax)线性(回归变得更加容易)。同样,通过深度学习框架的高级API也能更方便地实现softmax回归模型。本节继续使用Fashion-MNIST数据集,并保持批量大小为256。importtorchfromtorchimportnnfromd2limporttorchasd2l初始化模型参数[softmax回
- 第二篇:多模态技术突破——DeepSeek如何重构AI的感知与认知边界
python算法(魔法师版)
动态规划
——从跨模态对齐到因果推理的工程化实践在AI技术从单一模态向多模态跃迁的关键阶段,DeepSeek通过自研的多模态融合框架,在视觉-语言-语音的联合理解与生成领域实现系统性突破。本文将从技术实现层面,解构其跨模态表征学习、动态融合机制与因果推理能力的内在创新。1.跨模态对齐革命:时空一致性建模传统多模态模型常面临模态割裂问题,DeepSeek提出「时空同步对比学习」(ST-CL)框架:视觉-语言对
- AI模型升级版0.02
pps-key
pythonAI写作学习gpt
根据您的需求,我将提供一个升级版的AI对话模型的实现代码,该模型可以在Windows上运行,并支持训练和微调。我们将使用HuggingFace的transformers库和torch库来实现这个目标。同时,我会结合最新的技术趋势,例如强化微调(ReinforcementFine-Tuning),来提升模型的性能。步骤1:安装必要的库首先,确保您的Windows系统上安装了Python(推荐Pyth
- 蓝桥杯备考:前缀和算法---模板题
无敌大饺子 1
蓝桥杯职场和发展
【模板】前缀和这道题,如果我们简单的用暴力解法,时间复杂度就是O(q*N)也就是10的十次方,这时候我们就会超时我们要学习一种前缀和的算法,它能帮助我们做一些预处理,用空间复杂度代替时间复杂度,比如说这道题,我们开辟一个数组,f[N],我们只需要一个公式f[i]=f[i-1]+a[i]就能完成我们的预处理,最后查询的时间复杂度就是O(1)了,比如我们要查询l到r的和,我们就让f[r]-f[l-1]
- mac 安装多个python版本
泡了个面
macospython开发语言
python相关学习资料:https://edu.51cto.com/video/1158.htmlhttps://edu.51cto.com/video/4102.htmlhttps://edu.51cto.com/video/3832.html安装多个Python版本在Mac上的指南作为一名经验丰富的开发者,我经常被问到如何在Mac上安装和管理多个Python版本。这篇文章将详细指导你如何实现
- 深度学习查漏补缺:1.梯度消失、梯度爆炸和残差块
nnerddboy
白话机器学习深度学习人工智能
一、梯度消失梯度消失的根本原因在于激活函数的性质和链式法则的计算:激活函数的导数很小:常见的激活函数(例如Sigmoid和Tanh)在输入较大或较小时,输出趋于饱和(Sigmoid的输出趋于0或1),其导数接近于0。在反向传播中,每一层的梯度都会乘以激活函数的导数。如果导数很小,乘积就会导致梯度逐渐变小。链式法则的多次相乘:假设网络有nn层,梯度从输出层传到第ii层时,会经历多次链式相乘:如果每一
- (尚硅谷 Java 学习 B 站大学版)Day 13 面向对象 方法
亢从文_Jackson
java学习开发语言
4-5类的成员之二:方法(Method)一、“万事万物皆对象”**:(理解)1、在Java语言范畴中,我们都将功能、结构等封装到类中,通过类的实例化,来调用具体的功能结构>Scanner,String等>文件:File>网络资源:URL2、涉及到java语言与前端html、后端数据库交互时,前后端的结构在Java层面交互时,都体现为类、对象二、内存解析说明1、引用类型的变量,只可能存储两类值:nu
- VARGPT:将视觉理解与生成统一在一个模型中,北大推出支持混合模态输入与输出的多模态统一模型
蚝油菜花
每日AI项目与应用实例人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发非常感兴趣,我会每日分享大模型与AI领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!微信公众号|搜一搜:蚝油菜花快速阅读模型简介:VARGPT是北京大学推出的多模态大语言模型,专注于视觉理解和生成任务。主要功能:支持混合模态输入输出、高效视觉生成和广泛的多模态任务。技术原理:基于自回归框架,采用三阶段训练策略,
- kimi o1和deepseek o1对比,非常直观!
AI生成曾小健
LLM大语言模型人工智能
kimio1和deepseeko1对比,非常直观!刘俊是丁师兄大模型2025年01月25日21:34湖北两家凑巧同一天放出了解题推理模型,简单对比着看了下实现方案,o1类模型实现并没有和大家早期推测的那样用上MCTS,PRM这些方法,个人感觉也是太复杂的方法scaling不了。目前各家用的方案看起来更像是sft+rl的加强版,把推理过程内含进生成,而不是用结构去引导生成。两家效果看报告比较接近,个
- 【论文翻译】DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence
行动π技术博客
代码大模型deepseek
本翻译来自大模型翻译,如有不对的地方,敬请谅解引言开源社区通过开发诸如StarCoder(Li等人,2023b;Lozhkov等人,2024)、CodeLlama(Roziere等人,2023)、DeepSeek-Coder(Guo等人,2024)和Codestral(MistralAI,2024)等开源代码模型,在推进代码智能方面取得了显著进展。这些模型的性能已稳步接近闭源同类产品,为代码智能的
- tensorflow编码错误:TypeError: unsupported operand type(s) for *: ‘float‘ and ‘NoneType‘
Ding_99
tensorflowpython
tensorflow编码出现错误:TypeError:unsupportedoperandtype(s)for*:‘float’and‘NoneType’原码如下:importtensorflowastfw=tf.Variable(tf.constant(5,dtype=float))#给w赋随机值,初始值为float5lr=0.2#学习率设为0.2epoch=20#设置循环迭代次数foriinr
- 多语言教学材料生成:技术实现与业务价值分析
二进制独立开发
非纯粹GenAIGenAI与Python数据挖掘人工智能自然语言处理神经网络python语言模型学习方法
文章目录引言技术背景与需求分析多语言教学材料的业务需求技术挑战技术实现:LangChain与Writer模型的结合LangChain框架简介Writer模型的多语言生成能力实现多语言教学材料生成的代码示例多语言语音生成技术的应用多语言语音生成的需求CosyVoice模型的多语言语音生成能力实现多语言语音生成的代码示例业务价值分析降低多语言内容生成成本提高内容的一致性与质量增强用户体验与可访问性技术
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite