b − a a b = 1 a − 1 b \frac{b-a}{ab} = \frac{1}{a} - \frac{1}{b} abb−a=a1−b1
证明:
b − a a b = b a b − a a b = 1 a − 1 b \begin{align*} \\ &\frac{b-a}{ab} \\ = &\frac{b}{ab} - \frac{a}{ab} \\ = &\frac{1}{a} - \frac{1}{b} \\ \end{align*} ==abb−aabb−abaa1−b1
好的各位,直接上题目(自信)!
1 1 × 2 + 1 2 × 3 + 1 3 × 4 + ⋯ + 1 99 × 100 = ? \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \cdots + \frac{1}{99 \times 100} = ? 1×21+2×31+3×41+⋯+99×1001=?
嗯,不难,我们把每一项都使用裂项拆开,再抵消:
1 1 × 2 + 1 2 × 3 + 1 3 × 4 + ⋯ + 1 99 × 100 = ( 1 1 − 1 2 ) + ( 1 2 − 1 3 ) + ( 1 3 − 1 4 ) + ⋯ + ( 1 99 − 1 100 ) = 1 − 1 100 = 0.99 \begin{align*} \\ &\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \cdots + \frac{1}{99 \times 100} \\ = & (\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + \cdots + (\frac{1}{99} - \frac{1}{100}) \\ = & 1 - \frac{1}{100} \\ = & 0.99 \end{align*} ===1×21+2×31+3×41+⋯+99×1001(11−21)+(21−31)+(31−41)+⋯+(991−1001)1−10010.99
是不是非常简单?
1 1 × 2 + 1 2 × 4 + 1 4 × 8 + 1 8 × 16 + ⋯ + 1 2 99 × 2 100 = ? (结果保留幂次方) \frac{1}{1 \times 2} + \frac{1}{2 \times 4} + \frac{1}{4 \times 8} + \frac{1}{8 \times 16} + \cdots + \frac{1}{2^{99} \times 2^{100}} = ? (结果保留幂次方) 1×21+2×41+4×81+8×161+⋯+299×21001=?(结果保留幂次方)
叫做:万物皆可裂。
x a b = ( 1 a − 1 b ) x b − a \frac{x}{ab} = (\frac{1}{a} - \frac{1}{b})\frac{x}{b-a} abx=(a1−b1)b−ax
对的,只要分母可以写成两数之积,就一定可以裂差。
证明:先强制裂,然后调整。
x a b = x b − a × b − a a b = ( 1 a − 1 b ) x b − a \begin{align*} \\ &\frac{x}{ab} \\ = &\frac{x}{b-a} \times \frac{b-a}{ab} \\ = &(\frac{1}{a} - \frac{1}{b})\frac{x}{b-a} \\ \end{align*} ==abxb−ax×abb−a(a1−b1)b−ax
来个简单的吧……
2 1 × 4 + 2 4 × 7 + 2 7 × 10 + ⋯ + 2 97 × 100 = ? \frac{2}{1 \times 4} + \frac{2}{4 \times 7} + \frac{2}{7 \times 10} + \cdots + \frac{2}{97 \times 100} = ? 1×42+4×72+7×102+⋯+97×1002=?
嗯,不难,我们把每一项都使用强制裂项拆开,提取公因数,再抵消:
2 1 × 4 + 2 4 × 7 + 2 7 × 10 + ⋯ + 2 97 × 100 = 2 3 ( 1 1 − 1 4 ) + 2 3 ( 1 4 − 1 7 ) + 2 3 ( 1 7 − 1 10 ) + ⋯ + 2 3 ( 1 97 − 1 100 ) = 2 3 ( 1 − 1 100 ) = 0.66 \begin{align*} \\ & \frac{2}{1 \times 4} + \frac{2}{4 \times 7} + \frac{2}{7 \times 10} + \cdots + \frac{2}{97 \times 100} \\ = & \frac{2}{3}(\frac{1}{1} - \frac{1}{4}) + \frac{2}{3}(\frac{1}{4} - \frac{1}{7}) + \frac{2}{3}(\frac{1}{7} - \frac{1}{10}) + \cdots + \frac{2}{3}(\frac{1}{97} - \frac{1}{100}) \\ = & \frac{2}{3}(1 - \frac{1}{100}) \\ = & 0.66 \end{align*} ===1×42+4×72+7×102+⋯+97×100232(11−41)+32(41−71)+32(71−101)+⋯+32(971−1001)32(1−1001)0.66
是不是非常简单?
无
它其实不是标准的裂项……
c − a a b c = 1 a b − 1 b c \frac{c-a}{abc} = \frac{1}{ab} - \frac{1}{bc} abcc−a=ab1−bc1
证明:留作一道思考题。
提示:和知识点 1 1 1 的差不多。
4 1 × 3 × 5 + 4 3 × 5 × 7 + 4 5 × 7 × 9 + ⋯ + 4 97 × 99 × 101 = ? \frac{4}{1 \times 3 \times 5} + \frac{4}{3 \times 5 \times 7} + \frac{4}{5 \times 7 \times 9} + \cdots + \frac{4}{97 \times 99 \times 101} = ? 1×3×54+3×5×74+5×7×94+⋯+97×99×1014=?
解:拆开,抵消。
4 1 × 3 × 5 + 4 3 × 5 × 7 + 4 5 × 7 × 9 + ⋯ + 4 97 × 99 × 101 = ( 1 1 × 3 − 1 3 × 5 ) + ( 1 3 × 5 − 1 5 × 7 ) + ( 1 5 × 7 − 1 7 × 9 ) + ⋯ + ( 1 97 × 99 − 1 99 × 101 ) = 1 3 − 1 9999 = 3332 9999 \begin{align*} \\ & \frac{4}{1 \times 3 \times 5} + \frac{4}{3 \times 5 \times 7} + \frac{4}{5 \times 7 \times 9} + \cdots + \frac{4}{97 \times 99 \times 101} \\ = & (\frac{1}{1 \times 3} - \frac{1}{3 \times 5}) + (\frac{1}{3 \times 5} - \frac{1}{5 \times 7}) + (\frac{1}{5 \times 7} - \frac{1}{7 \times 9}) + \cdots + (\frac{1}{97 \times 99} - \frac{1}{99 \times 101})\\ = & \frac{1}{3} - \frac{1}{9999}\\ = & \frac{3332}{9999} \\ \end{align*} ===1×3×54+3×5×74+5×7×94+⋯+97×99×1014(1×31−3×51)+(3×51−5×71)+(5×71−7×91)+⋯+(97×991−99×1011)31−9999199993332
我想到一道好题,但是需要用到后面的知识点,所以这里先不放了。
a + b a b = 1 a + 1 b \frac{a+b}{ab} = \frac{1}{a} + \frac{1}{b} aba+b=a1+b1
这么简单,大家一定都一下子掌握了吧,不过为了熟悉裂项的题型,我还是放几道题。
1 + 2 1 × 2 − 2 + 3 2 × 3 + 3 + 4 3 × 4 − 4 + 5 4 × 5 + ⋯ + 99 + 100 99 × 100 = ? \frac{1+2}{1 \times 2} \color{red}{-} \color{black}{} \frac{2+3}{2 \times 3} \color{red}{+} \color{black}{} \frac{3+4}{3 \times 4} \color{red}{-} \color{black}{} \frac{4+5}{4 \times 5} \color{red}{+} \color{black}{} \cdots \color{red}{+} \color{black}{} \frac{99+100}{99 \times 100} = ? 1×21+2−2×32+3+3×43+4−4×54+5+⋯+99×10099+100=?
注意标红部分,是加减交替。
易错点:拆括号。
还有:这题的 LaTeX \LaTeX LATEX 好长 QaQ \text{QaQ} QaQ。
1 + 2 1 × 2 − 2 + 3 2 × 3 + 3 + 4 3 × 4 − 4 + 5 4 × 5 + ⋯ + 99 + 100 99 × 100 = ( 1 1 + 1 2 ) − ( 1 2 + 1 3 ) + ( 1 3 + 1 4 ) − ( 1 4 + 1 5 ) + ⋯ + ( 1 99 + 1 100 ) = 1 + ( 1 2 − 1 2 ) − ( 1 3 − 1 3 ) + ( 1 4 − 1 4 ) − ( 1 5 − 1 5 ) + ⋯ − ( 1 99 − 1 99 ) + 1 100 = 1 + 1 100 = 1.01 \begin{align*} \\ & \frac{1+2}{1 \times 2} \color{red}{-} \color{black}{} \frac{2+3}{2 \times 3} \color{red}{+} \color{black}{} \frac{3+4}{3 \times 4} \color{red}{-} \color{black}{} \frac{4+5}{4 \times 5} \color{red}{+} \color{black}{} \cdots \color{red}{+} \color{black}{} \frac{99+100}{99 \times 100} \\ = &(\frac{1}{1} + \frac{1}{2}) - (\frac{1}{2} + \frac{1}{3}) + (\frac{1}{3} + \frac{1}{4}) - (\frac{1}{4} + \frac{1}{5}) + \cdots + (\frac{1}{99} + \frac{1}{100})\\ = & 1 + (\frac{1}{2} - \frac{1}{2}) - (\frac{1}{3} - \frac{1}{3}) + (\frac{1}{4} - \frac{1}{4}) - (\frac{1}{5} - \frac{1}{5}) + \cdots - (\frac{1}{99} - \frac{1}{99}) + \frac{1}{100} \\ = & 1 + \frac{1}{100} \\ = & 1.01 \\ \end{align*} ====1×21+2−2×32+3+3×43+4−4×54+5+⋯+99×10099+100(11+21)−(21+31)+(31+41)−(41+51)+⋯+(991+1001)1+(21−21)−(31−31)+(41−41)−(51−51)+⋯−(991−991)+10011+10011.01
WARNING:前方高能 \color{red}{\text{WARNING:前方高能}} WARNING:前方高能
3 × ( 1 + 2 ) − 1 × ( 2 + 3 ) 1 × 2 × 3 + 5 × ( 3 + 4 ) − 3 × ( 4 + 5 ) 3 × 4 × 5 + 7 × ( 5 + 6 ) − 5 × ( 6 + 7 ) 5 × 6 × 7 + 9 × ( 7 + 8 ) − 7 × ( 8 + 9 ) 7 × 8 × 9 + ⋯ + 101 × ( 99 + 100 ) − 99 × ( 100 + 101 ) 99 × 100 × 101 = ? \frac{3 \times (1+2)-1 \times (2+3)}{1 \times 2 \times 3} + \frac{5 \times (3+4)-3 \times (4+5)}{3 \times 4 \times 5} + \frac{7 \times (5+6)-5 \times (6+7)}{5 \times 6 \times 7} + \frac{9 \times (7+8)-7 \times (8+9)}{7 \times 8 \times 9} + \cdots + \frac{101 \times (99+100)-99 \times (100+101)}{99 \times 100 \times 101} = ? 1×2×33×(1+2)−1×(2+3)+3×4×55×(3+4)−3×(4+5)+5×6×77×(5+6)−5×(6+7)+7×8×99×(7+8)−7×(8+9)+⋯+99×100×101101×(99+100)−99×(100+101)=?
1 1 × 2 + 1 2 × 4 + 1 4 × 8 + 1 8 × 16 + ⋯ + 1 2 99 × 2 100 = ( 1 1 − 1 2 ) + ( 1 2 − 1 4 ) + ( 1 4 − 1 8 ) + ( 1 8 − 1 16 ) + ⋯ + ( 1 2 99 − 1 2 100 ) = 1 − 1 2 100 = 2 100 − 1 2 100 \begin{align*} \\ &\frac{1}{1 \times 2} + \frac{1}{2 \times 4} + \frac{1}{4 \times 8} + \frac{1}{8 \times 16} + \cdots + \frac{1}{2^{99} \times 2^{100}} \\ = &(\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{4}) + (\frac{1}{4} - \frac{1}{8}) + (\frac{1}{8} - \frac{1}{16}) + \cdots + (\frac{1}{2^{99}} - \frac{1}{2^{100}}) \\ = &1 - \frac{1}{2^{100}} \\ = & \frac{2^{100} - 1}{2^{100}} \end{align*} ===1×21+2×41+4×81+8×161+⋯+299×21001(11−21)+(21−41)+(41−81)+(81−161)+⋯+(2991−21001)1−2100121002100−1
3 × ( 1 + 2 ) − 1 × ( 2 + 3 ) 1 × 2 × 3 + 5 × ( 3 + 4 ) − 3 × ( 4 + 5 ) 3 × 4 × 5 + 7 × ( 5 + 6 ) − 5 × ( 6 + 7 ) 5 × 6 × 7 + 9 × ( 7 + 8 ) − 7 × ( 8 + 9 ) 7 × 8 × 9 + ⋯ + 101 × ( 99 + 100 ) − 99 × ( 100 + 101 ) 99 × 100 × 101 = ( 1 + 2 1 × 2 − 2 + 3 2 × 3 ) + ( 3 + 4 3 × 4 − 4 + 5 4 × 5 ) + ( 5 + 6 5 × 6 − 6 + 7 6 × 7 ) + ( 7 + 8 7 × 8 − 8 + 9 8 × 9 ) + ⋯ + ( 99 + 100 99 × 100 − 100 + 101 100 × 101 ) = ( 1 + 1 2 ) − ( 1 2 + 1 3 ) + ( 1 3 + 1 4 ) − ( 1 4 + 1 5 ) + ( 1 5 + 1 6 ) − ( 1 6 + 1 7 ) + ( 1 7 + 1 8 ) − ( 1 8 + 1 9 ) + ⋯ + ( 1 99 + 1 100 ) − ( 1 100 + 1 101 ) = 1 + 1 101 = 102 101 \begin{align*} \\ &\frac{3 \times (1+2)-1 \times (2+3)}{1 \times 2 \times 3} + \frac{5 \times (3+4)-3 \times (4+5)}{3 \times 4 \times 5} + \frac{7 \times (5+6)-5 \times (6+7)}{5 \times 6 \times 7} + \frac{9 \times (7+8)-7 \times (8+9)}{7 \times 8 \times 9} + \cdots + \frac{101 \times (99+100)-99 \times (100+101)}{99 \times 100 \times 101} \\ \\ = &(\frac{1+2}{1 \times 2} - \frac{2+3}{2 \times 3}) + (\frac{3+4}{3 \times 4} - \frac{4+5}{4 \times 5}) + (\frac{5+6}{5 \times 6} - \frac{6+7}{6 \times 7}) + (\frac{7+8}{7 \times 8} - \frac{8+9}{8 \times 9}) + \cdots + (\frac{99+100}{99 \times 100} - \frac{100+101}{100 \times 101}) \\ = &(1 + \frac{1}{2}) - (\frac{1}{2} + \frac{1}{3}) + (\frac{1}{3} + \frac{1}{4}) - (\frac{1}{4} + \frac{1}{5}) + (\frac{1}{5} + \frac{1}{6}) - (\frac{1}{6} + \frac{1}{7}) + (\frac{1}{7} + \frac{1}{8}) - (\frac{1}{8} + \frac{1}{9}) + \cdots + (\frac{1}{99} + \frac{1}{100}) - (\frac{1}{100} + \frac{1}{101})\\ = &1 + \frac{1}{101} = \frac{102}{101} \end{align*} ===1×2×33×(1+2)−1×(2+3)+3×4×55×(3+4)−3×(4+5)+5×6×77×(5+6)−5×(6+7)+7×8×99×(7+8)−7×(8+9)+⋯+99×100×101101×(99+100)−99×(100+101)(1×21+2−2×32+3)+(3×43+4−4×54+5)+(5×65+6−6×76+7)+(7×87+8−8×98+9)+⋯+(99×10099+100−100×101100+101)(1+21)−(21+31)+(31+41)−(41+51)+(51+61)−(61+71)+(71+81)−(81+91)+⋯+(991+1001)−(1001+1011)1+1011=101102