- 语音识别学习系列(13):语音识别中的情感识别与表达
DoYangTan
语音识别学习人工智能
语音识别学习系列(13):语音识别中的情感识别与表达前言在语音识别领域,仅仅将语音准确转换为文字内容已不能满足日益多样化的人机交互需求。人们在交流过程中往往蕴含着丰富的情感信息,语音识别若能对情感进行识别与表达,将会使交互变得更加自然、智能且贴合人性化需求。本期我们就围绕语音识别中的情感识别与表达这一重要主题展开深入探讨,了解其背后的原理、方法以及实际应用价值。一、语音情感识别的基本原理与常用方法
- java:实现设置窗体背景颜色为淡蓝色(附带源码)
Katie。
Java实战项目java信息可视化开发语言
一、项目简介在桌面应用开发中,窗体背景颜色作为界面设计的重要组成部分,不仅影响整体美观,还能传递特定的情感和品牌信息。本项目旨在使用JavaSwing简单实现将窗体背景颜色设置为淡蓝色效果。该示例展示了如何创建一个基本的JFrame,并通过调用其内容面板的setBackground()方法,设置背景颜色为淡蓝色(RGB值173,216,230)。通过本项目,初学者可以了解Swing基本组件的使用方
- 四层协议攻防手册:从SYN Flood到UDP反射的深度防御
群联云防护小杜
安全问题汇总udp网络网络协议服务器爬虫运维web安全
一、四层协议攻击类型与特征攻击类型协议层特征SYNFloodTCP大量半开连接,SYN_RECV状态堆积UDP反射放大UDP小请求包触发大响应(如NTP、DNS响应)TCP分片攻击TCP发送异常分片耗尽重组资源连接耗尽攻击TCP建立大量空闲连接占用端口资源二、TCP层定制防御方案1.SYNCookie防护(内核参数优化)#启用SYNCookieecho1>/proc/sys/net/ipv4/tc
- GPT-4o mini TTS:OpenAI 推出轻量级文本转语音模型!情感操控+白菜价冲击配音圈
蚝油菜花
每日AI项目与应用实例开源人工智能
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!AI在线答疑->智能检索历史文章和开源项目->丰富的AI工具库->每日更新->尽在微信公众号->搜一搜:蚝油菜花️“声优连夜转行送外卖!OpenAI新模型每分钟语音成本仅9分钱”大家好,我是蚝油菜花。当同行还在用机械音合成器折磨听众时,这个AI怪物已
- 景联文科技提供高质量文本标注服务,驱动AI技术发展
景联文科技
科技人工智能
文本标注是指在原始文本数据上添加标签的过程,这些标签可以用来指示特定的实体、关系、事件等信息,以帮助计算机理解和处理这些数据。文本标注是自然语言处理(NLP)领域的一个重要环节,它通过为文本的不同部分提供具体的含义和上下文信息,增强机器学习和深度学习模型对文本内容的理解能力。标注类型情感分析情感极性:确定文本表达的情感倾向,如正面、负面或中立。强度评估:衡量情感的强烈程度,从轻微到极端不等。命名实
- 从“一壶浊酒”到“一份报告”,看永洪科技助力郎酒集团的数字化升级之旅
永洪科技
大数据数据分析数据可视化BI
白酒在社交、庆祝和宴请活动中扮演着重要的角色,它与人们的生活密切相关。白酒的制作过程、酿造技艺、酒文化习俗等方面都体现了当地的历史、传统和价值观。同时它也是一种文化的载体,承载着人们对于生活、友谊、团聚的情感和期待。人们通过分享白酒来加强彼此之间的联系和沟通,它成为了社交场合中的重要元素。白酒还通过艺术、文学、电影等形式在文化领域中得到了表达和展示。郎酒庄园作为我国传统的白酒行业,郎酒在国内市场占
- 自然语言处理(5)—— 中文分词
隐私无忧
人工智能#自然语言处理自然语言处理中文分词人工智能
中文分词的基本原理及实现1.什么是词2.基本原理3.发展趋势:多数场景无需显式分词信息处理的目标是使用计算机能够理解和产生自然语言。而自然语言理解和产生的前提是对语言能够做出全面的解析。汉语词汇是语言中能够独立运用的最小的语言单位,是语言中的原子结构。由于中文缺乏类似英文的空格分隔,分词的准确性直接影响后续任务(如机器翻译、情感分析)的效果。因此,对中文进行分词就显得至关重要。中文分词(Chine
- 从零至巅:逆向爬虫之道 0_0
蓝花楹下
逆向爬虫爬虫
逆向爬虫-涅槃吾本一介凡鸟,栖于尘世,碌碌无为,浑浑噩噩,如沧海一粟,渺小而无足轻重。然,虽为小雀,心亦怀鸿鹄之志,欲挥羽向天,如凤凰般,翱翔九天,俯瞰苍茫大地。奈何羽翼未丰,学识浅薄,常感力不从心,困于樊笼,不得展翅高飞。然,吾深知,学如逆水行舟,不进则退。故,今执笔为记,以明志,以自勉。愿以此笔记为舟,载吾渡学海,以勤为桨,以思为帆,逐浪前行,终至彼岸。虽前路漫漫,荆棘丛生,然吾心坚定,誓不负
- 使用大语言模型API在AI应用中的实现
qq_37836323
人工智能语言模型自然语言处理python
随着人工智能技术的迅速发展,大语言模型(LLM)在自然语言处理(NLP)领域的应用越来越广泛。本文将介绍如何使用大语言模型API来实现一些基础的AI应用,并提供一个简单的demo代码,帮助大家更好地理解和使用这些技术。大语言模型API简介大语言模型(如GPT-4)能够理解和生成类似人类的文本。这些模型可以应用于各种任务,包括文本生成、语言翻译、情感分析、对话系统等。为了方便国内用户访问这些强大的模
- JAVA学习-练习试用Java实现“实现一个Spark应用,对大数据集中的文本数据进行情感分析和关键词筛选”
守护者170
java学习java学习
问题:实现一个Spark应用,对大数据集中的文本数据进行情感分析和关键词筛选。解答思路:要实现一个Spark应用,对大数据集中的文本数据进行情感分析和关键词筛选,需要按照以下步骤进行:1.环境准备确保的环境中已经安装了ApacheSpark。可以从[ApacheSpark官网](https://spark.apache.org/downloads.html)下载并安装。2.创建Spark应用以下是
- 【面试场景题-你知道readTimeOutException,会引发oom异常吗】
F_windy
java面试
今天面试,我讲一个oom的场景。大致是这样:因为我们有一个需要调用第三方接口的http请求,然后因为线程池配置不合理,并且超时时间设置过长,导致线程堆积,最终oom异常。我觉得这个很好理解,然后,面试官一直问,我好像没有讲很清楚。他也有点呆,问我进阻塞队列的线程会运行吗?怎么就oom了?我说,大哥,线程创建出来就要占用内存了呀。他好像还是不懂。然后总结了一下。当系统出现readtimeout异常时
- 游戏成瘾与学习动力激发策略研究——了解“情感解离”“创伤理论”
*TQK*
知也思维认知心理学研究
一、情感解离(EmotionalDissociation)定义:情感解离是一种心理防御机制,指个体在经历无法承受的情绪压力或创伤时,通过切断情感体验与认知、记忆或现实感知的联系来保护自我。它不是简单的“麻木”,而是大脑为应对极端刺激而启动的“紧急逃生通道”。核心特征1、意识分裂现实解离:感到身体或环境“不真实”(如玩游戏时出现“灵魂出窍”般的视角抽离)情感隔离:能描述事件但无法体验对应情绪(如你通
- JS逆向案例-致远OA的前端密码加密逆向分析
布啦啦李
我的渗透笔记pythonJS逆向javascript逆向致远OA密码爆破防范措施js逆向
免责声明本文仅为技术研究与渗透测试思路分享,旨在帮助安全从业人员更好地理解相关技术原理和防御措施。任何个人或组织不得利用本文内容从事非法活动或攻击他人系统。如果任何人因违反法律法规或不当使用本文内容而导致任何法律后果,本文作者概不负责。请务必遵守法律法规,合理使用技术知识。一、致远OA的登录过程1.1实验版本致远A6+协同管理软件V8.0SP2用户名不变,密码加密,无验证码。1.2登录过程步骤操作
- AIGC带来数据革命:R语言如何成为数据科学家的秘密武器?
程序边界
AIGCr语言开发语言
文章目录一、R语言的基础特性1.1R语言的起源与发展1.2R语言的核心优势二、R语言在AIGC中的应用场景2.1数据预处理与清洗2.2文本分析与生成2.3机器学习与模型构建2.4数据可视化与报告生成三、R语言在AIGC中的具体案例3.1金融数据分析与预测3.2医疗数据分析与建模3.3社交媒体数据分析与情感分析四、R语言在AIGC中的未来展望4.1与深度学习框架的集成4.2与云计算平台的集成4.3与
- AI在项目中的应用
酒江
人工智能
AI大模型(如GPT-4、BERT、T5等)在各类项目中有广泛的应用,可以极大地提高项目效率、优化流程,并解决许多传统方法难以应对的问题。以下是AI大模型在不同类型项目中的一些具体应用:1.自然语言处理(NLP)文本生成和摘要:AI大模型可以生成高质量的文本内容,自动撰写文章、新闻报道、博客或技术文档,甚至可以进行文献摘要,帮助内容创作者提高效率。情感分析:在客户服务、社交媒体监控或市场研究项目中
- 超全!600 个通用大模型Prompt指令
AI Echoes
人工智能
超全!600个ChatGPT通用Prompt指令:1.电子邮件营销提示“我需要一种[电子邮件类型],让我的[理想客户角色]对我的[产品/服务]产生[情感],并说服他们以紧迫感采取[期望的行动]。”“我正在寻找一种[电子邮件类型],它可以直接说明我的[理想客户角色]的需求和痛点,并以紧迫感和强烈的提议说服他们采取[期望的行动]。”“我需要一封[电子邮件类型],向[理想的客户角色]展示我的[产品/服务
- 麦萌:《我们曾经有过家》深度解析 | 被至亲背刺后,首富如何用“系统性重构”逆风翻盘?
短剧萌
重构
剧情全解析:从“隐忍架构”到“复仇算法”的史诗级崩盘与逆袭1.系统初始化:首富的“降权模式”安城首富高志强为守护妻子李梦露的“平凡人生”,主动剥离财富与地位,化身能源厂普通职员。这一行为如同将分布式系统的核心节点降级为边缘服务——他默默为妻子铺路,助其从基层员工晋升至副厂长,甚至计划将能源厂最高控制权(厂长职位)移交给她。2.致命漏洞:情感协议的全面违约在权力交接的关键时刻(相当于系统升级前夜),
- 实战级AI变现路线:从0到3万/月的3大黄金赛道拆解
zhz5214
AI人工智能智能体aiAI编程程序员创富
赛道一:AI短视频带货(三农领域)全流程操作手册选题系统搭建借助DeepSeek-R1云端版,输入"地域特色(如云南菌菇)+情感共鸣点(留守老人)+产品植入位(土特产)"生成结构化选题指令示例:{"prompt":"生成三农领域爆款选题,输出JSON结构"}日产能200+选题,筛选率15%分镜工业化生产使用Gemini2.0flash的vision功能,配置参数:-分辨率:1080x1920竖版-
- 情感分析任务的概述
阿你不是
python开发语言
一、情感分析的概述1、什么是情感分析情感分析,也称为情感分类,是一种自然语言处理的任务,用于分析文本、语音或其他形式的数据中所包含的情感倾向。其目标是判断数据表达的情感是积极的(Positive)、消极的(Negative)还是中立的(Neutral),或者进一步细化为更复杂的情感类别(如愤怒、喜悦、悲伤等)。2、情感分析的主要应用场景1)商业领域:情感分析主要进行产品评价分析,从客户和买家的评价
- Vue 路由 (vue-router) 详细总结
遇见~未来
Vue.jsvue.js前端javascript
一、传统web应用与单页面web应用1.1传统web应用传统web应用由多个HTML页面组成,页面切换时会重新加载整个页面,导致用户体验不够流畅,对服务器压力较大。1.2单页面web应用(SPA)单页面应用只有一个HTML页面,通过JavaScript动态更新页面内容,实现局部刷新,具有以下特点:用户体验好:响应性强,类似桌面应用的即时性。服务器压力小:服务器只需提供数据,不负责页面渲染。前后端分
- Ollama 基本概念
Mr_One_Zhang
学习Ollamaai
Ollama是一个本地化的、支持多种自然语言处理(NLP)任务的机器学习框架,专注于模型加载、推理和生成任务。通过Ollama,用户能够方便地与本地部署的大型预训练模型进行交互。1.模型(Model)在Ollama中,模型是核心组成部分。它们是经过预训练的机器学习模型,能够执行不同的任务,例如文本生成、文本摘要、情感分析、对话生成等。Ollama支持多种流行的预训练模型,常见的模型有:deepse
- 到底选谁?oelove 婚恋系统10.0和金媒10.3都升级了
weixin_wx520-1983
小程序
目前都是婚庆类程序的佼佼者,两套系统很多网友不知道选哪个!我分享下我的建议,两套系统我都有目前OElove旗舰版(含商城插件+情感系统插件)金媒最新也是10.3旗舰版。1.对比性能架构两套系统我都在用,性能方面的话OElove因为非全开源所以运行效率要低一些特别是早期5.0之前版本运行期来就更慢了,体验滑坡,后来官方又把架构重新写了一边速度块了很多,金媒程序本身是全开源所以运行没问题。2.功能和稳
- Java直通车系列43【Spring Boot】(断路器Hystrix)
浪九天
Java直通车java开发语言springcloud后端spring
目录断路器(Hystrix)1.基本概念2.工作原理3.主要功能场景示例1.项目准备2.添加依赖3.启用Hystrix4.定义服务调用方法并添加Hystrix注解5.在控制器中调用服务方法6.测试断路器(Hystrix)1.基本概念在微服务架构中,服务之间通常存在大量的依赖关系。当某个下游服务出现故障或响应超时,可能会导致调用它的上游服务出现请求堆积、资源耗尽,最终引发整个系统的雪崩效应。断路器(
- Autoleaders控制组——51单片机学习笔记(2)
Autoleaders控制组 邓翔
51单片机学习笔记
51单片机学习(2)1.模块化编程1.1模块化编程的意义在学习单片机的途中,随着我们的知识不断扩展,我们能写出的代码也越来越复杂,越来越长了,有时我们自己写出的很长的代码,出现了错误,需要调试,但奈何自己的代码实在是太长了,真的不好分析到底是哪里出错了。这是因为我们将太多的函数和代码放在一个main.c的文件里,导致代码过度堆积。如果我们能够条理清晰地去将不同作用的代码和函数放在不同的xxx.c文
- 基于 svm 的金融咨询情感分析
ouprince
NLPsvm情感分析
详细代码与代码说明可见我的github:https://github.com/ouprince/svm处理流程:(1)金融咨询处理1.利用7万多条利好/利空语料(已经标注好的,分为1正性,-1负性两类),首先采用B-gram卡方差提取特征词汇2.使用卡方提取的特征词为每一篇咨询建立向量表示模型3.使用向量进行svm分割,训练语料80%,测试语料20%,并评估模型准确率,保存模型。4.加载保存的模型
- 基于AI算法实现的情感倾向分析的方法
程序员奇奇
计算机毕设人工智能算法
完整代码:https://download.csdn.net/download/pythonyanyan/87430621背景目前,情感倾向分析的方法主要分为两类:一种是基于情感词典的方法;一种是基于机器学习的方法,如基于大规模语料库的机器学习。前者需要用到标注好的情感词典,英文的词典有很多,中文主要有知网整理的情感词典Hownet和台湾大学整理发布的NTUSD两个情感词典,还有哈工大信息检索研究
- 【基于PyTorch】多项式贝叶斯分类器实现中文文本情感分类任务
鱼弦
机器学习设计类系统pytorch分类人工智能
多项式贝叶斯分类器实现中文文本情感分类任务介绍多项式朴素贝叶斯(MultinomialNaiveBayes,MultinomialNB)是一种常用于文本分类的算法,特别适用于多类别文本分类。其在处理离散数据(如文本数据中的词频)时表现优异,可以用于情感分析、垃圾邮件检测等任务。应用使用场景情感分析:识别用户评论的情感,例如正面评论和负面评论。垃圾邮件检测:鉴别电子邮件是否为垃圾邮件。新闻分类:将新
- 你的AI客服为何总抓不住客户核心诉求?(附特征优化方案)
人工智能
1特征工程的意义nlp任务中,原始文本经数值映射后形成的词向量序列,难充分表达语言深层语义特征。就需引入文本特征增强技术:语义信息补全:突破单词语义局限,捕获词序关联特征模型适配优化:构建符合算法输入规范的矩阵结构评估指标提升:通过特征增强直接影响模型准确率、召回率等核心KPI如电商评论情感分析场景,单纯用词频特征可能导致"这个手机质量差得惊人"和"这个手机质量惊人地差"被判定为相同语义,此时bi
- Assembly语言的自然语言处理
花韵婷
包罗万象golang开发语言后端
Assembly语言在自然语言处理中的应用引言自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能的一个重要分支,致力于实现计算机与人类语言之间的互动。随着计算能力的提升以及大数据的蓬勃发展,NLP在各个领域的应用如火如荼。从语音识别、机器翻译到情感分析等,NLP正在改变我们与信息之间的互动方式。不过,当前主流的NLP研究通常是用高级编程语言(如Python、Ja
- Python 爬虫实战:电影评论数据抓取与自然语言处理
西攻城狮北
python爬虫开发语言
引言作为一名对电影数据和自然语言处理感兴趣的内容创作者,我决定利用Python爬虫技术抓取IMDb上的电影评论数据,并进行自然语言处理分析。这不仅可以帮助我们了解观众对电影的反馈,还能为电影制作方提供有价值的参考。一、项目背景IMDb(互联网电影数据库)是全球最大的电影数据库,用户可以在上面查看电影信息和用户评论。本项目旨在爬取IMDb上的电影评论,并对评论进行自然语言处理(NLP),以提取情感、
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理