解决哈希冲突的常用方法分析

文章目录
  • 1.基本概念

  • 2.解决哈希冲突的方法

    • 2.1 开放定址法
      • 2.1.1 线行探查法
      • 2.1.2 平方探查法
      • 2.1.3 双散列函数探查法
    • 2.2 链地址法(拉链法)
    • 2.3 再哈希法
    • 2.4 建立公共溢出区

1.基本概念

哈希算法:根据设定的哈希函数H(key)和处理冲突方法将一组关键字映象到一个有限的地址区间上的算法。也称为散列算法、杂凑算法。 哈希表:数据经过哈希算法之后得到的集合。这样关键字和数据在集合中的位置存在一定的关系,可以根据这种关系快速查询。 非哈希表:与哈希表相对应,集合中的 数据和其存放位置没任何关联关系的集合。

由此可见,哈希算法是一种特殊的算法,能将任意数据散列后映射到有限的空间上,通常计算机软件中用作快速查找或加密使用。

哈希冲突:由于哈希算法被计算的数据是无限的,而计算后的结果范围有限,因此总会存在不同的数据经过计算后得到的值相同,这就是哈希冲突。

2.解决哈希冲突的方法

解决哈希冲突的方法一般有:开放定址法、链地址法(拉链法)、再哈希法、建立公共溢出区等方法。

2.1 开放定址法

从发生冲突的那个单元起,按照一定的次序,从哈希表中找到一个空闲的单元。然后把发生冲突的元素存入到该单元的一种方法。开放定址法需要的表长度要大于等于所需要存放的元素。 在开放定址法中解决冲突的方法有:线行探查法、平方探查法、双散列函数探查法。 开放定址法的缺点在于删除元素的时候不能真的删除,否则会引起查找错误,只能做一个特殊标记。只到有下个元素插入才能真正删除该元素。

2.1.1 线行探查法

线行探查法是开放定址法中最简单的冲突处理方法,它从发生冲突的单元起,依次判断下一个单元是否为空,当达到最后一个单元时,再从表首依次判断。直到碰到空闲的单元或者探查完全部单元为止。 可以参考csdn上flash对该方法的演示: http://student.zjzk.cn/course_ware/data_structure/web/flash/cz/kfdzh.swf

2.1.2 平方探查法

平方探查法即是发生冲突时,用发生冲突的单元d[i], 加上 1²、 2²等。即d[i] + 1²,d[i] + 2², d[i] + 3²…直到找到空闲单元。 在实际操作中,平方探查法不能探查到全部剩余的单元。不过在实际应用中,能探查到一半单元也就可以了。若探查到一半单元仍找不到一个空闲单元,表明此散列表太满,应该重新建立。

2.1.3 双散列函数探查法

这种方法使用两个散列函数hl和h2。其中hl和前面的h一样,以关键字为自变量,产生一个0至m—l之间的数作为散列地址;h2也以关键字为自变量,产生一个l至m—1之间的、并和m互素的数(即m不能被该数整除)作为探查序列的地址增量(即步长),探查序列的步长值是固定值l;对于平方探查法,探查序列的步长值是探查次数i的两倍减l;对于双散列函数探查法,其探查序列的步长值是同一关键字的另一散列函数的值。

2.2 链地址法(拉链法)

链接地址法的思路是将哈希值相同的元素构成一个同义词的单链表,并将单链表的头指针存放在哈希表的第i个单元中,查找、插入和删除主要在同义词链表中进行。链表法适用于经常进行插入和删除的情况。 如下一组数字,(32、40、36、53、16、46、71、27、42、24、49、64)哈希表长度为13,哈希函数为H(key)=key%13,则链表法结果如下:

**代码语言:**javascript

复制

0       
1  -> 40 -> 27 -> 53 
2
3  -> 16 -> 42
4
5
6  -> 32 -> 71
7  -> 46
8
9
10 -> 36 -> 49
11 -> 24
12 -> 64

注:在java中,链接地址法也是HashMap解决哈希冲突的方法之一,jdk1.7完全采用单链表来存储同义词,jdk1.8则采用了一种混合模式,对于链表长度大于8的,会转换为红黑树存储。

2.3 再哈希法

就是同时构造多个不同的哈希函数: Hi = RHi(key) i= 1,2,3 … k; 当H1 = RH1(key) 发生冲突时,再用H2 = RH2(key) 进行计算,直到冲突不再产生,这种方法不易产生聚集,但是增加了计算时间。

2.4 建立公共溢出区

将哈希表分为公共表和溢出表,当溢出发生时,将所有溢出数据统一放到溢出区

你可能感兴趣的:(哈希算法,算法)